Zermelo-Markov-Dubins problem and extensions in marine navigation

被引:0
|
作者
Caillau, Jean-Baptiste [1 ]
Maslovskaya, Sofya [2 ]
Mensch, Thomas [3 ]
Moulinier, Timothee [3 ]
Pomet, Jean-Baptiste [2 ]
机构
[1] Univ Cote Azur, CNRS, INRIA, LJAD, Nice, France
[2] Univ Cote Azur, INRIA, CNRS, Nice, France
[3] CGG, Marine Acquisit Div, Massy, France
关键词
CURVATURE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This note accounts for optimal control techniques applied to marine navigation for seismic acquisition. More precisely, the goal is to gain time in turns and alignment maneuvers. A model for the kinematics of the marine vessel and sea current is proposed, then extended to include the evolution of the shape of the towed underwater cables during the maneuver. Two minimum time problems are stated, depending on whether the shape of the streamers is in the model or not. The simpler case is the so-called Zermelo-Markov-Dubins problem, recently studied in the literature. It generalizes the classical Dubins problem. The complete model is not standard, and preliminary analysis of controllability and of properties of minimum time trajectories are given.
引用
收藏
页码:517 / 522
页数:6
相关论文
共 34 条
  • [1] Zermelo-Markov-Dubins with two trailers
    Sacchelli, Ludovic
    Caillau, Jean-Baptiste
    Combot, Thierry
    Pomet, Jean-Baptiste
    IFAC PAPERSONLINE, 2021, 54 (19): : 249 - 254
  • [2] Optimal Synthesis of the Zermelo-Markov-Dubins Problem in a Constant Drift Field
    Bakolas, Efstathios
    Tsiotras, Panagiotis
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 156 (02) : 469 - 492
  • [3] Time-Optimal Synthesis for the Zermelo-Markov-Dubins Problem: the Constant Wind Case
    Bakolas, Efstathios
    Tsiotras, Panagiotis
    2010 AMERICAN CONTROL CONFERENCE, 2010, : 6163 - 6168
  • [4] Optimal Synthesis of the Zermelo–Markov–Dubins Problem in a Constant Drift Field
    Efstathios Bakolas
    Panagiotis Tsiotras
    Journal of Optimization Theory and Applications, 2013, 156 : 469 - 492
  • [5] Zermelo Navigation Problem in Geometry
    Dusek, Zdenek
    NASE MORE, 2018, 65 (04): : 250 - 253
  • [6] Zermelo Navigation Problem with State Constraints
    Cherkasov, Oleg
    Malykh, Egor
    Smirnova, Nina
    PERSPECTIVES IN DYNAMICAL SYSTEMS II-NUMERICAL AND ANALYTICAL APPROACHES, DSTA 2021, 2024, 454 : 103 - 112
  • [7] A Zermelo navigation problem with a vortex singularity
    Bonnard, Bernard
    Cots, Olivier
    Wembe, Boris
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2021, 27
  • [8] Regarding a problem of Zermelo navigation.
    Mania, B
    MATHEMATISCHE ANNALEN, 1937, 113 : 584 - 599
  • [9] Solution to the Quantum Zermelo Navigation Problem
    Brody, Dorje C.
    Meier, David M.
    PHYSICAL REVIEW LETTERS, 2015, 114 (10)
  • [10] The Weighted Markov-Dubins Problem
    Kumar, Deepak Prakash
    Darbha, Swaroop
    Manyam, Satyanarayana Gupta
    Casbeer, David
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (03) : 1563 - 1570