Zermelo Navigation Problem with State Constraints

被引:0
|
作者
Cherkasov, Oleg [1 ]
Malykh, Egor [1 ]
Smirnova, Nina [1 ]
机构
[1] Lomonosov Moscow State Univ, Moscow, Russia
关键词
Zermelo navigation problem; State constraints; Optimal synthesis;
D O I
10.1007/978-3-031-56496-3_8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The article uses the example of the Zermelo navigation problem to illustrate a simple way to address state constraints of a certain type. The problem of the horizontal distance maximization of an autonomous aircraft operating in a steady, homogeneous flow field is considered. Process time is fixed beforehand. The simple particle model of the aircraft is considered. The particle moves in a horizontal plane with a constant modulus velocity relative to the flow of the medium. The angular velocity of rotation of the particle velocity vector is considered as the control variable. The angle between the velocity vector and the horizontal axis is subjected to a phase constraint. The structure of the dynamic system allows to reduce the optimal problem to the problem of a smaller dimension. In reduced problem the state constraints transform to the constraints on the control variables. For the reduced problem, the optimal synthesis is designed. Next, for the original problem, the sequence and the number of the arcs with motion along state constraints are determined. The control law in the initial problem is established.
引用
收藏
页码:103 / 112
页数:10
相关论文
共 50 条
  • [1] Zermelo Navigation Problem in Geometry
    Dusek, Zdenek
    NASE MORE, 2018, 65 (04): : 250 - 253
  • [2] A Zermelo navigation problem with a vortex singularity
    Bonnard, Bernard
    Cots, Olivier
    Wembe, Boris
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2021, 27
  • [3] Regarding a problem of Zermelo navigation.
    Mania, B
    MATHEMATISCHE ANNALEN, 1937, 113 : 584 - 599
  • [4] Solution to the Quantum Zermelo Navigation Problem
    Brody, Dorje C.
    Meier, David M.
    PHYSICAL REVIEW LETTERS, 2015, 114 (10)
  • [5] On generalization of Zermelo navigation problem on Riemannian manifolds
    Kopacz, Piotr
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2019, 16 (04)
  • [6] Hybrid search method for Zermelo's navigation problem
    Precioso, Daniel
    Milson, Robert
    Bu, Louis
    Menchions, Yvonne
    Gomez-Ullate, David
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (04):
  • [7] Blended Shared Control of Zermelo's Navigation Problem
    Enes, Aaron
    Book, Wayne
    2010 AMERICAN CONTROL CONFERENCE, 2010, : 4307 - 4312
  • [8] Zermelo's navigation problem for some special surfaces of rotation
    Li, Yanlin
    Piscoran, Laurian-Ioan
    Alqahtani, Lamia Saeed
    Alkhaldi, Ali H.
    Ali, Akram
    AIMS MATHEMATICS, 2023, 8 (07): : 16278 - 16290
  • [9] Zermelo-Markov-Dubins problem and extensions in marine navigation
    Caillau, Jean-Baptiste
    Maslovskaya, Sofya
    Mensch, Thomas
    Moulinier, Timothee
    Pomet, Jean-Baptiste
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 517 - 522
  • [10] The generalization of Zermelo’s navigation problem with variable speed and limited acceleration
    Mohammad Hossein Shavakh
    Behroz Bidabad
    International Journal of Dynamics and Control, 2022, 10 : 391 - 402