Assessment of poly(L-lactide) as an environmentally benign CO2 capture and storage adsorbent

被引:5
|
作者
Stelitano, Sara [1 ,2 ]
Lazzaroli, Victor [1 ]
Conte, Giuseppe [1 ]
Pingitore, Valentino [1 ]
Policicchio, Alfonso [1 ,3 ,4 ]
Agostino, Raffaele Giuseppe [1 ,3 ,4 ]
机构
[1] Univ Calabria, Dipartimento Fis, Cosenza, Italy
[2] RINA Consulting CSM SpA, Zona Ind, Catanzaro, Italy
[3] CNISM Consiglio Nazl Interuniv Sci Fis Mat, Rome, Italy
[4] Univ Calabria, CNR Nanotec, Cosenza, Italy
关键词
adsorption; biomaterials; Interfaces; morphology; porous materials; surfaces; CARBON-DIOXIDE CAPTURE; PORE-SIZE DISTRIBUTION; POLY(LACTIC ACID); ACTIVATED CARBON; GAS SOLUBILITY; POROUS CARBONS; ADSORPTION; SORPTION; CRYSTALLIZATION; PLA;
D O I
10.1002/app.49587
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Carbon capture and storage (CCS) in conjunction with an increasing use of renewables provides a clean pathway to sustainable development and climate change mitigation. In selecting a low temperature CCS adsorbent, parameters such as selectivity, regeneration energy, and economicity play a crucial role. Poly(L-lactide) (PLA) is one of the most promising materials in science and engineering, not only because it is a green polymer progressively replacing petrobased plastics, but also for its carbon dioxide (CO2)-philic nature that makes it a suitable candidate for greenhouse gas capture and climate change mitigation. Literature data point to PLA as a valid CCS candidate, although no direct gaseous CO(2)adsorption investigation or with mild preparation/regenerative energy was reported. In the present experimental work, a deeper investigation of the adsorption/desorption properties of PLA in presence of gaseous CO(2)at room temperature was undertaken by means of a home-made Sievert-type apparatus. The effects of pressure (0-15 bar), morphology (commercial pellets, powder, and flakes), and regenerative energy (303 and 333 K) were investigated. PLA samples were also characterized by helium picnometry to obtain skeletal density and by XRD and SEM to obtain morphological and structural information. Results show that PLA represents a valid and ecological alternative among the materials for the capture of CO2. The PLA absorption capacity reaches 16 wt% at 15 bar and 303 K, and is closely linked to the thermal treatment, morphology, and crystalline structure of the material.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Degradation of poly(L-lactide) under CO2 laser treatment above the ablation threshold
    Antonczak, Arkadiusz J.
    Stepak, Bogusz D.
    Szustakiewicz, Konrad
    Wojcik, Michal R.
    Abramski, Krzysztof M.
    POLYMER DEGRADATION AND STABILITY, 2014, 109 : 97 - 105
  • [22] Poly(L-lactide)-grafted bioglass/poly(lactide-co-glycolide) scaffolds with supercritical CO2 foaming reprocessing for bone tissue engineering
    Shujun Dong
    Lin Wang
    Qiushi Li
    Xuesi Chen
    Shujie Liu
    Yanmin Zhou
    Chemical Research in Chinese Universities, 2017, 33 : 499 - 506
  • [23] Poly(L-lactide)-grafted Bioglass/Poly(lactide-co-glycolide) Scaffolds with Supercritical CO2 Foaming Reprocessing for Bone Tissue Engineering
    Dong Shujun
    Wang Lin
    Li Qiushi
    Chen Xuesi
    Liu Shujie
    Zhou Yanmin
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2017, 33 (03) : 499 - 506
  • [24] Thermogelling hydrogels of poly(ε-caprolactone-CO-D,L-lactide)-poly(ethylene glycol)-poly(ε-caprolactone-CO-D,L-lactide) and poly(ε-caprolactone-CO-L-lactide)poly(ethylene glycol)-poly(ε-caprolactone-CO-L-lactide) aqueous solutions
    Jiang, Zhiqiang
    Deng, Xianmo
    Hao, Jianyuan
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2007, 45 (17) : 4091 - 4099
  • [25] Effect of poly(ε-caprolactone-co-L-lactide) on thermal and functional properties of poly(L-lactide)
    Qin, Yuyue
    Liu, Shiqi
    Zhang, Yingjie
    Yuan, Mingwei
    Li, Hongli
    Yuan, Minglong
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2014, 70 : 327 - 333
  • [26] Crystalline Structure and Morphology of Poly(L-lactide) Formed under High-Pressure CO2
    Marubayashi, Hironori
    Akaishi, Satoshi
    Akasaka, Shuichi
    Asai, Shigeo
    Sumita, Masao
    MACROMOLECULES, 2008, 41 (23) : 9192 - 9203
  • [27] Microwave-irradiated preparation of poly(D,L-lactide) and poly(D,L-lactide)-co-poly(ethylene glycol) copolymer
    Shu, J
    Wang, P
    Zhang, K
    Tian, LY
    Zheng, T
    Zhao, BX
    PROCEEDINGS OF THE 2004 CHINA-JAPAN JOINT MEETING ON MICROWAVES, 2004, : 422 - 426
  • [28] Effect of Growing Crystalline Phase on Bubble Nucleation in Poly(L-Lactide)/CO2 Batch Foaming
    Taki, Kentaro
    Kitano, Daisaku
    Ohshima, Masahiro
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2011, 50 (06) : 3247 - 3252
  • [29] Towards environmentally benign capture and conversion: heterogeneous metal catalyzed CO2 hydrogenation in CO2 capture solvents
    Kothandaraman, Jotheeswari
    Heldebrant, David J.
    GREEN CHEMISTRY, 2020, 22 (03) : 828 - 834
  • [30] Ring-opening polymerization of L-lactide in supercritical CO2
    Zhou, Xianjue
    Li, Jin
    Shao, Huili
    Hu, Xuechao
    Shiyou Huagong/Petrochemical Technology, 2004, 33 (08):