A Technical Review of Convolutional Neural Network-Based Mammographic Breast Cancer Diagnosis

被引:67
|
作者
Zou, Lian [1 ,2 ,3 ]
Yu, Shaode [1 ,4 ]
Meng, Tiebao [5 ]
Zhang, Zhicheng [1 ,2 ]
Liang, Xiaokun [1 ,2 ,6 ]
Xie, Yaoqin [1 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen, Peoples R China
[2] Univ Chinese Acad Sci, Shenzhen Coll Adv Technol, Shenzhen, Peoples R China
[3] Sichuan Prov Peoples Hosp, Canc Ctr, Chengdu, Sichuan, Peoples R China
[4] Univ Texas Southwestern Med Ctr Dallas, Dept Radiat Oncol, Dallas, TX 75390 USA
[5] Sun Yat Sen Univ, Dept Med Imaging, Ctr Canc, Guangzhou, Guangdong, Peoples R China
[6] Stanford Univ, Dept Radiat Oncol, Med Phys Div, Palo Alto, CA 94304 USA
基金
中国国家自然科学基金;
关键词
CLASSIFICATION; SEGMENTATION;
D O I
10.1155/2019/6509357
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study reviews the technique of convolutional neural network (CNN) applied in a specific field of mammographic breast cancer diagnosis (MBCD). It aims to provide several clues on how to use CNN for related tasks. MBCD is a long-standing problem, and massive computer-aided diagnosis models have been proposed. The models of CNN-based MBCD can be broadly categorized into three groups. One is to design shallow or to modify existing models to decrease the time cost as well as the number of instances for training; another is to make the best use of a pretrained CNN by transfer learning and fine-tuning; the third is to take advantage of CNN models for feature extraction, and the differentiation of malignant lesions from benign ones is fulfilled by using machine learning classifiers. This study enrolls peer-reviewed journal publications and presents technical details and pros and cons of each model. Furthermore, the findings, challenges and limitations are summarized and some clues on the future work are also given. Conclusively, CNN-based MBCD is at its early stage, and there is still a long way ahead in achieving the ultimate goal of using deep learning tools to facilitate clinical practice. This review benefits scientific researchers, industrial engineers, and those who are devoted to intelligent cancer diagnosis.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Deep convolutional neural network-based algorithm for muscle biopsy diagnosis
    Kabeya, Yoshinori
    Okubo, Mariko
    Yonezawa, Sho
    Nakano, Hiroki
    Inoue, Michio
    Ogasawara, Masashi
    Saito, Yoshihiko
    Tanboon, Jantima
    Indrawati, Luh Ari
    Kumutpongpanich, Theerawat
    Chen, Yen-Lin
    Yoshioka, Wakako
    Hayashi, Shinichiro
    Iwamori, Toshiya
    Takeuchi, Yusuke
    Tokumasu, Reitaro
    Takano, Atsushi
    Matsuda, Fumihiko
    Nishino, Ichizo
    LABORATORY INVESTIGATION, 2022, 102 (03) : 220 - 226
  • [22] Deep Convolutional Neural Network-Based Framework in the Automatic Diagnosis of Migraine
    Zülfikar Aslan
    Circuits, Systems, and Signal Processing, 2023, 42 : 3054 - 3071
  • [23] A convolutional neural network-based model observer for breast CT images
    Kim, Gihun
    Han, Minah
    Shim, Hyunjung
    Baek, Jongduk
    MEDICAL PHYSICS, 2020, 47 (04) : 1619 - 1632
  • [24] Deep Convolutional Neural Network-Based Framework in the Automatic Diagnosis of Migraine
    Aslan, Zulfikar
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2023, 42 (05) : 3054 - 3071
  • [25] Deep Neural Network-Based Model for Breast Cancer Lesion Diagnosis in Mammography Images
    Yakoubi, Mohamed Amine
    Khiari, Nada
    Khiari, Aamine
    Melouah, Ahlem
    ACTA INFORMATICA PRAGENSIA, 2024, 13 (02) : 213 - 233
  • [26] Dense Convolutional Neural Network Based Deep Learning Framework for the Diagnosis of Breast Cancer
    Hardeep Kaur
    Wireless Personal Communications, 2023, 132 : 1765 - 1780
  • [27] Dense Convolutional Neural Network Based Deep Learning Framework for the Diagnosis of Breast Cancer
    Kaur, Hardeep
    WIRELESS PERSONAL COMMUNICATIONS, 2023, 132 (03) : 1765 - 1780
  • [28] Convolutional Neural Network-Based EEG Signal Analysis: A Systematic Review
    Rajwal, Swati
    Aggarwal, Swati
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2023, 30 (06) : 3585 - 3615
  • [29] Convolutional Neural Network-Based EEG Signal Analysis: A Systematic Review
    Swati Rajwal
    Swati Aggarwal
    Archives of Computational Methods in Engineering, 2023, 30 : 3585 - 3615
  • [30] Use of a novel convolutional neural network-based mammographic evaluation to assess response to adjuvant endocrine therapy in women with early-stage breast cancer.
    McGuinness, Julia Elizabeth
    Ro, Vicky
    Mutasa, Simukayi
    Ha, Richard
    Crew, Katherine D.
    JOURNAL OF CLINICAL ONCOLOGY, 2021, 39 (15)