Discovering Thermoelectric Materials Using Machine Learning: Insights and Challenges

被引:7
|
作者
Tabib, Mandar V. [1 ]
Lovvik, Ole Martin [2 ]
Johannessen, Kjetil [1 ]
Rasheed, Adil [1 ]
Sagvolden, Espen [2 ]
Rustad, Anne Marthine [1 ]
机构
[1] SINTEF Digital Math & Cybernet, Trondheim, Norway
[2] SINTEF Ind, Sustainable Energy Technol, Oslo, Norway
关键词
Machine learning; Density functional theory; Thermoelectric; Material screening; Discovery;
D O I
10.1007/978-3-030-01418-6_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work involves the use of combined forces of data-driven machine learning models and high fidelity density functional theory for the identification of new potential thermoelectric materials. The traditional method of thermoelectric material discovery from an almost limitless search space of chemical compounds involves expensive and time consuming experiments. In the current work, the density functional theory (DFT) simulations are used to compute the descriptors (features) and thermoelectric characteristics (labels) of a set of compounds. The DFT simulations are computationally very expensive and hence the database is not very exhaustive. With an anticipation that the important features can be learned by machine learning (ML) from the limited database and the knowledge could be used to predict the behavior of any new compound, the current work adds knowledge related to (a) understanding the impact of selection of influence of training/test data, (b) influence of complexity of ML algorithms, and (c) computational efficiency of combined DFT-ML methodology.
引用
收藏
页码:392 / 401
页数:10
相关论文
共 50 条
  • [31] Discovering de novo peptide substrates for enzymes using machine learning
    Lorillee Tallorin
    JiaLei Wang
    Woojoo E. Kim
    Swagat Sahu
    Nicolas M. Kosa
    Pu Yang
    Matthew Thompson
    Michael K. Gilson
    Peter I. Frazier
    Michael D. Burkart
    Nathan C. Gianneschi
    Nature Communications, 9
  • [32] Discovering de novo peptide substrates for enzymes using machine learning
    Tallorin, Lorillee
    Wang, JiaLei
    Kim, Woojoo E.
    Sahu, Swagat
    Kosa, Nicolas M.
    Yang, Pu
    Thompson, Matthew
    Gilson, Michael K.
    Frazier, Peter I.
    Burkart, Michael D.
    Gianneschi, Nathan C.
    NATURE COMMUNICATIONS, 2018, 9
  • [33] Discovering user communities on the Internet using unsupervised machine learning techniques
    Paliouras, G
    Papatheodorou, C
    Karkaletsis, V
    Spyropoulos, CD
    INTERACTING WITH COMPUTERS, 2002, 14 (06) : 761 - 791
  • [34] A machine learning-based framework for predicting the power factor of thermoelectric materials
    Zeng, Yuxuan
    Cao, Wei
    Peng, Tan
    Hou, Yue
    Miao, Ling
    Wang, Ziyu
    Shi, Jing
    APPLIED MATERIALS TODAY, 2025, 43
  • [35] Unsupervised machine learning for discovery of promising half-Heusler thermoelectric materials
    Jia, Xue
    Deng, Yanshuai
    Bao, Xin
    Yao, Honghao
    Li, Shan
    Li, Zhou
    Chen, Chen
    Wang, Xinyu
    Mao, Jun
    Cao, Feng
    Sui, Jiehe
    Wu, Junwei
    Wang, Cuiping
    Zhang, Qian
    Liu, Xingjun
    NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
  • [36] Unsupervised machine learning for discovery of promising half-Heusler thermoelectric materials
    Xue Jia
    Yanshuai Deng
    Xin Bao
    Honghao Yao
    Shan Li
    Zhou Li
    Chen Chen
    Xinyu Wang
    Jun Mao
    Feng Cao
    Jiehe Sui
    Junwei Wu
    Cuiping Wang
    Qian Zhang
    Xingjun Liu
    npj Computational Materials, 8
  • [37] Ionic thermoelectric materials: Innovations and challenges
    Jia, Shuanglin
    Qian, Wanyu
    Yu, Penglu
    Li, Ke
    Li, Mingxuan
    Lan, Jinle
    Lin, Yuan-Hua
    Yang, Xiaoping
    MATERIALS TODAY PHYSICS, 2024, 42
  • [38] Ionic thermoelectric materials: Innovations and challenges
    Jia, Shuanglin
    Qian, Wanyu
    Yu, Penglu
    Li, Ke
    Li, Mingxuan
    Lan, Jinle
    Lin, Yuan-Hua
    Yang, Xiaoping
    Materials Today Physics, 2024, 42
  • [39] Materials discovery and design using machine learning
    Liu, Yue
    Zhao, Tianlu
    Ju, Wangwei
    Shi, Siqi
    JOURNAL OF MATERIOMICS, 2017, 3 (03) : 159 - 177
  • [40] Accelerating materials discovery using machine learning
    Yongfei Juan
    Yongbing Dai
    Yang Yang
    Jiao Zhang
    JournalofMaterialsScience&Technology, 2021, 79 (20) : 178 - 190