Beryllium global erosion and deposition at JET-ILW simulated with ERO2.0

被引:49
|
作者
Romazanov, J. [1 ,44 ]
Brezinsek, S. [1 ,44 ]
Borodin, D. [1 ,44 ]
Groth, M. [2 ,6 ]
Wiesen, S. [1 ,44 ]
Kirschner, A. [1 ,44 ]
Huber, A. [1 ,44 ]
Widdowson, A. [3 ]
Airila, M. [4 ,116 ]
Eksaeva, A. [1 ,5 ]
Borodkina, I [1 ,5 ]
Linsmeier, Ch [1 ]
Abduallev, S. [44 ]
Abhangi, M. [51 ]
Abreu, P. [58 ]
Afzal, M. [12 ]
Aggarwal, K. M. [34 ]
Ahlgren, T. [106 ]
Ahn, J. H. [13 ]
Aho-Mantila, L. [116 ]
Aiba, N. [74 ]
Airila, M. [4 ,116 ]
Albanese, R. [109 ]
Aldred, V. [12 ]
Alegre, D. [98 ]
Alessi, E. [50 ]
Aleynikov, P. [60 ]
Alfier, A. [17 ]
Alkseev, A. [77 ]
Allinson, M. [12 ]
Alper, B. [12 ]
Alves, E. [58 ]
Ambrosino, G. [109 ]
Ambrosino, R. [110 ]
Amicucci, L. [95 ]
Amosov, V. [93 ]
Sunden, E. Andersson [27 ]
Angelone, M. [95 ]
Anghel, M. [90 ]
Angioni, C. [67 ]
Appel, L. [12 ]
Appelbee, C. [12 ]
Arena, P. [35 ]
Ariola, M. [110 ]
Arnichand, H. [13 ]
Arshad, S. [46 ]
Ash, A. [12 ]
Ashikawa, N. [73 ]
Aslanyan, V. [69 ]
Asunta, O. [6 ]
机构
[1] Forschungszentrum Julich, Inst Energie & Klimaforsch, Plasmaphys, Partner Trilateral Euregio Cluster TEC, D-5242 Julich, Germany
[2] Aalto Univ, Assoc EURATOM Tekes, Espoo, Finland
[3] Culham Ctr Fus Energy, Abingdon OX14 3DB, Oxon, England
[4] VTT Tech Res Ctr Finland Ltd, POB 1000, FI-02044 Espoo, Finland
[5] Natl Res Nucl Univ MEPhI, 31 Kashirskoe Sh, Moscow 115409, Russia
[6] Aalto Univ, POB 14100, FIN-00076 Aalto, Finland
[7] Aix Marseille Univ, CNRS, Ctr Marseille, M2P2 UMR 7340, F-13451 Marseille, France
[8] Aix Marseille Univ, CNRS, IUSTI UMR 7343, F-13013 Marseille, France
[9] Aix Marseille Univ, CNRS, PIIM, UMR 7345, F-13013 Marseille, France
[10] Arizona State Univ, Tempe, AZ USA
[11] Barcelona Supercomp Ctr, Barcelona, Spain
[12] CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[13] CEA, IRFM, F-13108 St Paul Les Durance, France
[14] Univ Calif San Diego, Ctr Energy Res, La Jolla, CA 92093 USA
[15] Ctr Brasileiro Pesquisas Fis, Rua Xavier Sigaud 160, BR-22290180 Rio De Janeiro, Brazil
[16] Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy
[17] Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy
[18] Daegu Univ, Gyongsan 712174, Gyeongbuk, South Korea
[19] Univ Carlos III Madrid, Dept Fis, Madrid 28911, Spain
[20] Univ Ghent, Dept Appl Phys UG, St Pietersnieuwstr 41, B-9000 Ghent, Belgium
[21] Chalmers Univ Technol, Dept Earth & Space Sci, SE-41296 Gothenburg, Sweden
[22] Univ Cagliari, Dept Elect & Elect Engn, Piazza Armi 09123, Cagliari, Italy
[23] Comenius Univ, Dept Expt Phys, Fac Math Phys & Informat, Mlynska Dolina F2, Bratislava 84248, Slovakia
[24] Warsaw Univ Technol, Dept Mat Sci, PL-01152 Warsaw, Poland
[25] Korea Adv Inst Sci & Technol, Dept Nucl & Quantum Engn, Daejeon 34141, South Korea
[26] Univ Strathclyde, Dept Phys & Appl Phys, Glasgow G4 ONG, Lanark, Scotland
[27] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden
[28] Chalmers Univ Technol, Dept Phys, S-41296 Gothenburg, Sweden
[29] Imperial Coll London, Dept Phys, London SW7 2AZ, England
[30] KTH, SCI, Dept Phys, SE-10691 Stockholm, Sweden
[31] Univ Basel, Dept Phys, Basel, Switzerland
[32] Univ Oxford, Dept Phys, Oxford OX1 2JD, England
[33] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[34] Queens Univ, Dept Pure & Appl Phys, Belfast BT7 1NN, Antrim, North Ireland
[35] Univ Catania, Dipartimento Ingn Elettr Elettron & Informat, I-95125 Catania, Italy
[36] Univ Trento, Dipartimento Ingn Ind, Trento, Italy
[37] Dublin City Univ, Dublin, Ireland
[38] Swiss Plasma Ctr, EPFL, CH-1015 Lausanne, Switzerland
[39] EUROfus Programme Management Unit, Boltzmannstr 2, D-85748 Garching, Germany
[40] Culham Sci Ctr, EUROfus Programme Management Unit, Culham OX14 3DB, England
[41] European Commiss, B-1049 Brussels, Belgium
[42] ULB, Fluid & Plasma Dynam, Campus Plaine CP 231 Blvd Triomphe, B-1050 Brussels, Belgium
[43] FOM Inst DIFFER, Eindhoven, Netherlands
[44] Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany
[45] Fourth State Res, 503 Lockhart Dr, Austin, TX USA
[46] Fus Energy Joint Undertaking, Josep Pl 2,Torres Diagonal Litoral B3, Barcelona 08019, Spain
[47] KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden
[48] Gen Atom, POB 85608, San Diego, CA 92186 USA
[49] HRS Fusion, W Orange, NJ USA
[50] IFP CNR, Via R Cozzi 53, I-20125 Milan, Italy
关键词
Beryllium; Erosion; ER02.0; JET ITER-like wall; PLASMA EDGE; TRANSPORT;
D O I
10.1016/j.nme.2019.01.015
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The recently developed Monte-Carlo code ERO2.0 is applied to the modelling of limited and diverted discharges at JET with the ITER-like wall (ILW). The global beryllium (Be) erosion and deposition is simulated and compared to experimental results from passive spectroscopy. For the limiter configuration, it is demonstrated that Be self-sputtering is an important contributor (at least 35%) to the Be erosion. Taking this contribution into account, the ERO2.0 modelling confirms previous evidence that high deuterium (D) surface concentrations of up to similar to 50% atomic fraction provide a reasonable estimate of Be erosion in plasma-wetted areas. For the divertor configuration, it is shown that drifts can have a high impact on the scrape-off layer plasma flows, which in turn affect global Be transport by entrainment and lead to increased migration into the inner divertor. The modelling of the effective erosion yield for different operational phases (ohmic, L- and H-mode) agrees with experimental values within a factor of two, and confirms that the effective erosion yield decreases with increasing heating power and confinement.
引用
收藏
页码:331 / 338
页数:8
相关论文
共 31 条
  • [21] Validation of the ERO2.0 code using W7-X and JET experiments and predictions for ITER operation
    Romazanov, J.
    Brezinsek, S.
    Baumann, C.
    Rode, S.
    Kirschner, A.
    Wang, E.
    Effenberg, F.
    Borodin, D.
    Navarro, M. X.
    Xie, H.
    Groth, M.
    Kumpulainen, H.
    Schmid, K.
    Pitts, R. A.
    Terra, A.
    Knieps, A.
    Gao, Y.
    Krychowiak, M.
    Pandey, A.
    Linsmeier, Ch.
    NUCLEAR FUSION, 2024, 64 (08)
  • [22] ERO2.0 modelling of the effects of surface roughness on molybdenum erosion and redeposition in the PSI-2 linear plasma device
    Eksaeva, A.
    Borodin, D.
    Romazanov, J.
    Kreter, A.
    Pospieszczyk, A.
    Dickheuer, S.
    Moeller, S.
    Goeths, B.
    Rasinski, M.
    Knoche, U.
    Terra, A.
    Kirschner, A.
    Borodkina, I.
    Eichler, M.
    Unterberg, B.
    Brezinsek, S.
    Linsmeier, Ch
    Vassallo, E.
    Pedroni, M.
    Passoni, M.
    Dellasega, D.
    Sala, M.
    Romeo, F.
    Henderson, S.
    O'Mullane, M.
    Summers, H.
    Tskhakaya, D.
    Schmid, K.
    PHYSICA SCRIPTA, 2020, T171 (01)
  • [23] The impact of surface morphology on the erosion of metallic surfaces - Modelling with the 3D Monte-Carlo code ERO2.0
    Eksaeva, A.
    Borodin, D.
    Romazanov, J.
    Kirschner, A.
    Kreter, A.
    Goths, B.
    Rasinski, M.
    Unterberg, B.
    Brezinsek, S.
    Linsmeier, Ch.
    Vassallo, E.
    Passoni, M.
    Dellasega, D.
    Sala, M.
    Romeo, F.
    Borodkina, I.
    NUCLEAR MATERIALS AND ENERGY, 2021, 27
  • [24] Simulation Analysis of the Carbon Deposition Profile on Directional Material Probes in the Large Helical Device Using the ERO2.0 Code
    Shoji, Mamoru
    Masuzaki, Suguru
    Kawamura, Gakushi
    Romazanov, Juri
    Kirschner, Andreas
    Brezinsek, Sebastijan
    PLASMA AND FUSION RESEARCH, 2022, 17
  • [25] Understanding tungsten erosion during inter/intra-ELM periods in He-dominated JET-ILW plasmas
    Huber, A.
    Brezinsek, S.
    Huber, V
    Solano, E. R.
    Sergienko, G.
    Borodkina, I
    Aleiferis, S.
    Meigs, A.
    Tskhakaya, D.
    Sertoli, M.
    Baruzzo, M.
    Borodin, D.
    Carvalho, P.
    Delabie, E.
    Douai, D.
    Kirschner, A.
    Lawson, K.
    Linsmeier, Ch
    Mailloux, J.
    Menmuir, S.
    Mertens, Ph
    Pawelec, E.
    Romazanov, J.
    Shaw, A.
    PHYSICA SCRIPTA, 2021, 96 (12)
  • [26] Global SOLPS-ITER and ERO2.0 coupling in a linear device for the study of plasma-wall interaction in helium plasma
    Alberti, G.
    Tonello, E.
    Carminati, P.
    Uccello, A.
    Bonnin, X.
    Romazanov, J.
    Brezinsek, S.
    Passoni, M.
    NUCLEAR FUSION, 2023, 63 (02)
  • [27] ERO code benchmarking of ITER first wall beryllium erosion/re-deposition against LIM predictions
    Borodin, D.
    Kirschner, A.
    Carpentier-Chouchana, S.
    Pitts, R. A.
    Lisgo, S.
    Bjoerkas, C.
    Stangeby, P. C.
    Elder, J. D.
    Galonska, A.
    Matveev, D.
    Philipps, V.
    Samm, U.
    PHYSICA SCRIPTA, 2011, T145
  • [28] Surface roughness effect on Mo physical sputtering and re-deposition in the linear plasma device PSI-2 predicted by ERO2.0
    Eksaeva, A.
    Borodin, D.
    Romazanov, J.
    Kirschner, A.
    Kreter, A.
    Eichler, M.
    Rasinski, M.
    Pospieszczyk, A.
    Unterberg, B.
    Brezinsek, S.
    Linsmeier, Ch
    Tskhakaya, D.
    Borodkina, I
    Komm, M.
    NUCLEAR MATERIALS AND ENERGY, 2019, 19 : 13 - 18
  • [29] Global and pedestal confinement and pedestal structure in dimensionless collisionality scans of low-triangularity H-mode plasmas in JET-ILW
    Frassinetti, L.
    Beurskens, M. N. A.
    Saarelma, S.
    Boom, J. E.
    Delabie, E.
    Flanagan, J.
    Kempenaars, M.
    Giroud, C.
    Lomas, P.
    Meneses, L.
    Maggi, C. S.
    Menmuir, S.
    Nunes, I.
    Rimini, F.
    Stefanikova, E.
    Urano, H.
    Verdoolaege, G.
    Abhangi, M.
    Abreu, P.
    Aftanas, M.
    Afzal, M.
    Aggarwal, K. M.
    Aho-Mantila, L.
    Ahonen, E.
    Aints, M.
    Airila, M.
    Albanese, R.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allan, P.
    Almaviva, S.
    Alonso, A.
    Alper, B.
    Alsworth, I.
    Alves, D.
    Ambrosino, G.
    Ambrosino, R.
    Amosov, V.
    Andersson, F.
    Andersson Sunden, E.
    Angelone, M.
    Anghel, A.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Apruzzese, G.
    Arena, P.
    NUCLEAR FUSION, 2017, 57 (01)
  • [30] EDGE2D-EIRENE and ERO2.0 predictions of nitrogen molecular break-up and transport in the divertor of JET low-confinement mode plasmas
    Maenpaa, R.
    Kumpulainen, H.
    Groth, M.
    Romazanov, J.
    Lomanowski, B.
    Brezinsek, S.
    Di Genova, S.
    Karhunen, J.
    Lawson, K.
    Meigs, A. G.
    Menmuir, S.
    Shaw, A.
    NUCLEAR MATERIALS AND ENERGY, 2022, 33