Efficient multiplier based on hybrid approach for Toeplitz matrix-vector product

被引:0
|
作者
Chang, Ku-Young [1 ]
Park, Sun-Mi [2 ]
Hong, Dowon [2 ]
Seo, Changho [2 ]
机构
[1] Elect & Telecommun Res Inst, Informat Secur Res Div, 218 Gajeongro, Daejeon 34129, South Korea
[2] Kongju Natl Univ, Dept Appl Math, 56 Gongjudaehak Ro, Gongju Si 32588, Chungnam, South Korea
基金
新加坡国家研究基金会;
关键词
Computational complexity; Toeplitz matrix-vector product; Subquadratic space complexity multiplier; Parallel multiplier; Hybrid multiplier;
D O I
10.1016/j.ipl.2017.11.006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a hybrid approach for a Toeplitz matrix-vector product (TMVP) of size k . 2(i)3(j), where k >= 1 and i, j >= 0. It is possible to make trade-offs between time and space complexities for a TMVP by choosing values k, i, and j properly. We show that the multiplier based on the proposed hybrid TMVP approach has lower space as well as time complexities than other subquadratic space complexity multipliers for five fields recommended by NIST. Moreover, for those five fields, the space complexities of the proposed multiplier are reduced by a minimum 59% and a maximum 77% compared with quadratic space complexity multiplier. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:33 / 38
页数:6
相关论文
共 50 条
  • [41] Mixed analog digital matrix-vector multiplier for neural network synapses
    Lehmann, T
    Bruun, E
    Dietrich, C
    ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 1996, 9 (01) : 55 - 63
  • [42] INTEGRATED OPTIC MATRIX-VECTOR MULTIPLIER USING MULTIFREQUENCY ACOUSTOOPTIC DIFFRACTION
    GOTO, N
    KANAYAMA, Y
    MIYAZAKI, Y
    IEEE 1989 ULTRASONICS SYMPOSIUM : PROCEEDINGS, VOLS 1 AND 2, 1989, : 487 - 490
  • [43] Parallel matrix-vector product on rings with a minimum of communications
    Colombet, L
    Michallon, P
    Trystram, D
    PARALLEL COMPUTING, 1996, 22 (02) : 289 - 310
  • [44] Efficient CSR-Based Sparse Matrix-Vector Multiplication on GPU
    Gao, Jiaquan
    Qi, Panpan
    He, Guixia
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2016, 2016
  • [45] Adaptive sparse matrix representation for efficient matrix-vector multiplication
    Zardoshti, Pantea
    Khunjush, Farshad
    Sarbazi-Azad, Hamid
    JOURNAL OF SUPERCOMPUTING, 2016, 72 (09): : 3366 - 3386
  • [46] Maximizing sparse matrix-vector product performance on RISC based MIMD computers
    McLay, RT
    Swift, S
    Carey, GF
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 1996, 37 (02) : 146 - 158
  • [47] Speeding up Curve25519 using Toeplitz Matrix-vector Multiplication
    Taskin, Halil Kemal
    Cenk, Murat
    PROCEEDINGS OF THE FIFTH WORKSHOP ON CRYPTOGRAPHY AND SECURITY IN COMPUTING SYSTEMS (CS2 2018), 2016, : 1 - 6
  • [48] Hartley transform representations of symmetric Toeplitz matrix inverses with application to fast matrix-vector multiplication
    Heinig, G
    Rost, K
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 22 (01) : 86 - 105
  • [49] Efficient kriging via fast matrix-vector products
    Memarsadeghi, Nargess
    Raykar, Vikas C.
    Duraiswami, Ramani
    Mount, David M.
    2008 IEEE AEROSPACE CONFERENCE, VOLS 1-9, 2008, : 1966 - +
  • [50] Multiway Splitting Method for Toeplitz Matrix Vector Product
    Hasan, M. Anwar
    Negre, Christophe
    IEEE TRANSACTIONS ON COMPUTERS, 2013, 62 (07) : 1467 - 1471