Tail asymptotics of generalized deflated risks with insurance applications

被引:3
|
作者
Ling, Chengxiu [1 ,2 ]
Peng, Zuoxiang [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[2] Univ Lausanne, Dept Actuarial Sci, UNIL Dorigny, CH-1015 Lausanne, Switzerland
来源
基金
中国国家自然科学基金;
关键词
Deflated risks; Expectile; Haezendonck-Goovaerts risk measure; Second-order/third-order regular variations; Extreme value theory; REGULAR VARIATION; EXTREME; INDEX;
D O I
10.1016/j.insmatheco.2016.09.012
中图分类号
F [经济];
学科分类号
02 ;
摘要
Let X and S is an element of (0, 1) be two independent risk variables. This paper investigates approximations of generalized deflated risks E{(XII)-I-kappa{SX > x}} with a flexible constant kappa >= 0 under extreme value theory framework. Our findings are illustrated by three applications concerning higher-order tail approximations of deflated risks as well as approximations of the Haezendonck Goovaerts and expectile risk measures. Numerical analyses show that higher-order approximations obtained in this paper significantly improve lower-order approximations. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:220 / 231
页数:12
相关论文
共 50 条
  • [41] INSURANCE RISKS
    BROYDE, M
    NATURE, 1993, 364 (6439) : 665 - 665
  • [42] Tail asymptotics for dependent subexponential differences
    H. Albrecher
    S. Asmussen
    D. Kortschak
    Siberian Mathematical Journal, 2012, 53 : 965 - 983
  • [43] Tail asymptotics for dependent subexponential differences
    Albrecher, H.
    Asmussen, S.
    Kortschak, D.
    SIBERIAN MATHEMATICAL JOURNAL, 2012, 53 (06) : 965 - 983
  • [44] Asymptotics of generalized derangements
    Ismail, Mourad E. H.
    Simeonov, Plamen
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2013, 39 (01) : 101 - 127
  • [45] Measuring tail risks
    Chen, Kan
    Cheng, Tuoyuan
    JOURNAL OF FINANCE AND DATA SCIENCE, 2022, 8 : 296 - 308
  • [46] Gold and tail risks
    Salisu, Afees A.
    Adediran, Idris
    Omoke, Philip C.
    Tchankam, Jean Paul
    RESOURCES POLICY, 2023, 80
  • [47] Modularity and tail risks
    Motor Ship, 2020, 101 (1181):
  • [48] FORECASTING TAIL RISKS
    De Nicolo, Gianni
    Lucchetta, Marcella
    JOURNAL OF APPLIED ECONOMETRICS, 2017, 32 (01) : 159 - 170
  • [49] Commodity tail risks
    Ammann, Manuel
    Moerke, Mathis
    Prokopczuk, Marcel
    Wursig, Christoph Matthias
    JOURNAL OF FUTURES MARKETS, 2023, 43 (02) : 168 - 197
  • [50] Asymptotics for tail probability of total claim amount with negatively dependent claim sizes and its applications
    Y. Yang
    Y. Wang
    R. Leipus
    J. Šiaulys
    Lithuanian Mathematical Journal, 2009, 49 : 337 - 352