Super edge-antimagic labelings of the generalized Petersen graph P(n, (n-1)/2))

被引:0
|
作者
Baca, Martin
Baskoro, Edy Tri
Simanjuntak, Rinovia
Sugeng, Kiki Ariyanti
机构
[1] Tech Univ, Dept Appl Math, Kosice 04200, Slovakia
[2] Inst Teknol Bandung, Dept Math, Bandung 10, Indonesia
[3] Univ Ballarat, Sch Informat Technol & Math Sci, Ballarat, Vic, Australia
[4] Univ Indonesia, Dept Math, Jakarta, Indonesia
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An (a,d)-edge-antimagic total labeling of G is a one-to-one mapping f taking the vertices and edges onto 1, 2,..., vertical bar V (G)vertical bar + vertical bar E(G)vertical bar so that the edge-weights w(xy) = f(x) + f(y) + f(xy), xy is an element of E(G), form an arithmetic progression with initial term a and common difference d. An (a, d)-edge-antimagic total labeling is called super (a,d)-edge-antimagic total if f(V(G)) = {1, 2,..., vertical bar V(G)vertical bar}. This paper considers such labelings applied to cycles and generalized Petersen graphs.
引用
收藏
页码:119 / 127
页数:9
相关论文
共 50 条
  • [31] Liar's Domination Number of Generalized Petersen Graphs P(n, 1) and P(n, 2)
    Wang, Haoli
    Xu, Xirong
    Yang, Yuansheng
    Lu, Kai
    UTILITAS MATHEMATICA, 2012, 88 : 317 - 335
  • [32] Hosoya, Schultz, and Gutman Polynomials of Generalized Petersen Graphs P(n,1) and P(n,2)
    Shaheen, Ramy
    Mahfud, Suhail
    Alhawat, Qays
    JOURNAL OF MATHEMATICS, 2023, 2023
  • [33] A subfamily of a generalized Petersen graph P(n, 3) with constant metric dimension
    Husnine, S. M.
    Kousar, Imrana
    UTILITAS MATHEMATICA, 2010, 81 : 111 - 120
  • [34] On the Chromatic Index of the Signed Generalized Petersen Graph GP(n, 2)
    Zheng, Shanshan
    Cai, Hongyan
    Wang, Yuanpei
    Sun, Qiang
    AXIOMS, 2022, 11 (08)
  • [35] On the domination number of generalized Petersen graphs P(n, 2)
    Fu Xueliang
    Yang Yuansheng
    Jiang Baoqi
    DISCRETE MATHEMATICS, 2009, 309 (08) : 2445 - 2451
  • [36] The Bondage Number of Generalized Petersen Graphs P(n, 2)
    Pei, Lidan
    Pan, Xiangfeng
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2020, 2020
  • [37] Radio Number for Generalized Petersen Graphs P(n,2)
    Zhang F.
    Nazeer S.
    Habib M.
    Zia T.J.
    Ren Z.
    IEEE Access, 2019, 7 : 142000 - 142008
  • [38] On the Packing Number of Generalized Petersen Graphs P(n, 2)
    Yang Yuansheng
    Fu Xueliang
    Jiang Baoqi
    ARS COMBINATORIA, 2012, 104 : 23 - 32
  • [39] Perfect 2-colorings of the generalized Petersen graph GP(n, 3)
    Karami, Hamed
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2022, 10 (01) : 239 - 245
  • [40] Independent Rainbow Domination Numbers of Generalized Petersen Graphs P(n, 2) and P(n, 3)
    Gabrovsek, Bostjan
    Peperko, Aljosa
    Zerovnik, Janez
    MATHEMATICS, 2020, 8 (06)