Interpretable Molecule Generation via Disentanglement Learning

被引:4
|
作者
Du, Yuanqi [1 ]
Guo, Xiaojie [2 ]
Shehu, Amarda [1 ]
Zhao, Liang [2 ]
机构
[1] George Mason Univ, Dept Comp Sci, Fairfax, VA USA
[2] George Mason Univ, Dept Informat Sci & Technol, Fairfax, VA 22030 USA
来源
ACM-BCB 2020 - 11TH ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS | 2020年
基金
美国国家科学基金会;
关键词
Graph neural network; molecule generation; disentangled representation learning; ENUMERATION;
D O I
10.1145/3388440.3414709
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Designing molecules with specific structural and functional properties (e.g., drug-likeness and water solubility) is central to advancing drug discovery and material science, but it poses outstanding challenges both in wet and dry laboratories. The search space is vast and rugged. Recent advances in deep generative models are motivating new computational approaches building over deep learning to tackle the molecular space. Despite rapid advancements, state-of-the-art deep generative models for molecule generation have many limitations, including lack of interpretability. In this paper we address this limitation by proposing a generic framework for interpretable molecule generation based on novel disentangled deep graph generative models with property control. Specifically, we propose a disentanglement enhancement strategy for graphs. We also propose new deep neural architecture to achieve the above learning objective for inference and generation for variable-size graphs efficiently. Extensive experimental evaluation demonstrates the superiority of our approach in various critical aspects, such as accuracy, novelty, and disentanglement.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] ColorPeel: Color Prompt Learning with Diffusion Models via Color and Shape Disentanglement
    Butt, Muhammad Atif
    Wang, Kai
    Vazquez-Corral, Javier
    van de Weijer, Joost
    COMPUTER VISION-ECCV 2024, PT VII, 2025, 15065 : 456 - 472
  • [42] Personalization Disentanglement for Federated Learning
    Yan, Peng
    Long, Guodong
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 318 - 323
  • [43] Automated Feature Document Review via Interpretable Deep Learning
    Ye, Ming
    Chen, Yuanfan
    Zhang, Xin
    He, Jinning
    Cao, Jicheng
    Liu, Dong
    Gao, Jing
    Dai, Hailiang
    Cheng, Shengyu
    2023 IEEE/ACM 45TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING: COMPANION PROCEEDINGS, ICSE-COMPANION, 2023, : 351 - 354
  • [44] Interpretable Representation Learning of Cardiac MRI via Attribute Regularization
    Di Folco, Maxime
    Bercea, Cosmin I.
    Chan, Emily
    Schnabel, Julia A.
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT X, 2024, 15010 : 492 - 501
  • [45] Interpretable Probabilistic Password Strength Meters via Deep Learning
    Pasquini, Dario
    Ateniese, Giuseppe
    Bernaschi, Massimo
    COMPUTER SECURITY - ESORICS 2020, PT I, 2020, 12308 : 502 - 522
  • [46] Understanding microbiome dynamics via interpretable graph representation learning
    Kateryna Melnyk
    Kuba Weimann
    Tim O. F. Conrad
    Scientific Reports, 13
  • [47] FedSkill: Privacy Preserved Interpretable Skill Learning via Imitation
    Jiang, Yushan
    Yu, Wenchao
    Song, Dongjin
    Wang, Lu
    Cheng, Wei
    Chen, Haifeng
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 1010 - 1019
  • [48] Pesticide effect on earthworm lethality via interpretable machine learning
    Kotli, Mihkel
    Piir, Geven
    Maran, Uko
    JOURNAL OF HAZARDOUS MATERIALS, 2024, 461
  • [49] DIML: Deep Interpretable Metric Learning via Structural Matching
    Zhao, Wenliang
    Rao, Yongming
    Zhou, Jie
    Lu, Jiwen
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (04) : 2518 - 2532
  • [50] Learning Interpretable Forensic Representations via Local Window Modulation
    Das, Sowmen
    Amin, Md. Ruhul
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 436 - 447