Action Recognition Using Low-Rank Sparse Representation

被引:1
|
作者
Cheng, Shilei [1 ]
Gu, Song [2 ]
Ye, Maoquan [1 ]
Xie, Mei [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Elect Engn, Chengdu, Sichuan, Peoples R China
[2] Chengdu Aeronaut Polytech, Dept Aircraft Maintenance Engn, Chengdu, Sichuan, Peoples R China
关键词
human action recognition; low-rank sparse representation; bag of word model; sparse coding representation; low-rank representation; ALGORITHM;
D O I
10.1587/transinf.2017EDL8176
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Human action recognition in videos draws huge research interests in computer vision. The Bag-of-Word model is quite commonly used to obtain the video level representations, however, BoW model roughly assigns each feature vector to its nearest visual word and the collection of unordered words ignores the interest points' spatial information, inevitably causing nontrivial quantization errors and impairing improvements on classification rates. To address these drawbacks, we propose an approach for action recognition by encoding spatio-temporal log Euclidean covariance matrix (ST-LECM) features within the low-rank and sparse representation framework. Motivated by low rank matrix recovery, local descriptors in a spatial temporal neighborhood have similar representation and should be approximately low rank. The learned coefficients can not only capture the global data structures, but also preserve consistent. Experimental results showed that the proposed approach yields excellent recognition performance on synthetic video datasets and are robust to action variability, view variations and partial occlusion.
引用
收藏
页码:830 / 834
页数:5
相关论文
共 50 条
  • [31] Learning Low-Rank Representation with Block-Sparse Structure for Single Sample Face Recognition
    Liu, Fan
    Ding, Yuhua
    Rui, Ting
    Xu, Feng
    8TH INTERNATIONAL CONFERENCE ON INTERNET MULTIMEDIA COMPUTING AND SERVICE (ICIMCS2016), 2016, : 238 - 241
  • [32] Sparse Individual Low-Rank Component Representation for Face Recognition in the IoT-Based System
    Yang, Shicheng
    Wen, Ying
    He, Lianghua
    Zhou, Mengchu
    Abusorrah, Abdullah
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (24) : 17320 - 17332
  • [33] Joint latent low-rank and non-negative induced sparse representation for face recognition
    Wu, Mingna
    Wang, Shu
    Li, Zhigang
    Zhang, Long
    Wang, Ling
    Ren, Zhenwen
    APPLIED INTELLIGENCE, 2021, 51 (11) : 8349 - 8364
  • [34] Joint latent low-rank and non-negative induced sparse representation for face recognition
    Mingna Wu
    Shu Wang
    Zhigang Li
    Long Zhang
    Ling Wang
    Zhenwen Ren
    Applied Intelligence, 2021, 51 : 8349 - 8364
  • [35] Unsupervised Video Matting via Sparse and Low-Rank Representation
    Zou, Dongqing
    Chen, Xiaowu
    Cao, Guangying
    Wang, Xiaogang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (06) : 1501 - 1514
  • [36] Robust Adaptive Low-Rank and Sparse Embedding for Feature Representation
    Wang, Lei
    Zhang, Zhao
    Liu, Guangcan
    Ye, Qiaolin
    Qin, Jie
    Wang, Meng
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 800 - 805
  • [37] Sparse Representation and Low-Rank Approximation for Sensor Signal Processing
    Zhu, Yanping
    Jiang, Aimin
    Liu, Xiaofeng
    Kwan, Hon Keung
    2017 IEEE 30TH CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2017,
  • [38] Low-Rank and Sparse Representation for Anomaly Detection in Hyperspectral Images
    Pagare, M. S.
    Risodkar, Y. R.
    2018 INTERNATIONAL CONFERENCE ON ADVANCES IN COMMUNICATION AND COMPUTING TECHNOLOGY (ICACCT), 2018, : 594 - 597
  • [39] Low-Rank and Sparse Representation for Hyperspectral Image Processing: A Review
    Peng, Jiangtao
    Sun, Weiwei
    Li, Heng-Chao
    Li, Wei
    Meng, Xiangchao
    Ge, Chiru
    Du, Qian
    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2022, 10 (01) : 10 - 43
  • [40] Sparse and low-rank representation for multi-label classification
    Zhi-Fen He
    Ming Yang
    Applied Intelligence, 2019, 49 : 1708 - 1723