TOWARDS UNSUPERVISED OPEN-SET PERSON RE-IDENTIFICATION

被引:0
|
作者
Wang, Hanxiao [1 ]
Zhu, Xiatian [1 ]
Xiang, Tao [1 ]
Gong, Shaogang [1 ]
机构
[1] Queen Mary Univ London, London, England
关键词
Person Re-identification; Open-set Recognition; Unsupervised Subspace Learning; Kernelisation;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Most existing person re-identification (ReID) methods assume the availability of extensively labelled cross-view person pairs and a closed-set scenario (i.e. all the probe people exist in the gallery set). These two assumptions significantly limit their usefulness and scalability in real-world applications, particularly with large scale camera networks. To overcome the limitations, we introduce a more challenging yet realistic ReID setting termed OneShot-OpenSet-ReID, and propose a novel Regularised Kernel Subspace Learning model for ReID under this setting. Our model differs significantly from existing ReID methods due to its ability of effectively learning cross-view identity-specific information from unlabelled data alone, and its flexibility of naturally accommodating pairwise labels if available.
引用
收藏
页码:769 / 773
页数:5
相关论文
共 50 条
  • [21] Unsupervised Person Re-identification by Soft Multilabel Learning
    Yu, Hong-Xing
    Zheng, Wei-Shi
    Wu, Ancong
    Guo, Xiaowei
    Gong, Shaogang
    Lai, Jian-Huang
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 2143 - 2152
  • [22] Adaptive Label Allocation for Unsupervised Person Re-Identification
    Song, Yihu
    Liu, Shuaishi
    Yu, Siyang
    Zhou, Siyu
    ELECTRONICS, 2022, 11 (05)
  • [23] Pseudo labels purification for unsupervised person Re-IDentification
    Haiming Sun
    Yuan Gao
    Shiwei Ma
    Signal, Image and Video Processing, 2025, 19 (1)
  • [24] Online Unsupervised Domain Adaptation for Person Re-identification
    Rami, Hamza
    Ospici, Matthieu
    Lathuiliere, Stephane
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 3829 - 3838
  • [25] Unsupervised person Re-identification: A review of recent works
    Jahan, Meskat
    Hassan, Manajir
    Hossin, Sahadat
    Hossain, Iftekhar
    Hasan, Mahmudul
    NEUROCOMPUTING, 2024, 572
  • [26] Unsupervised Pre-training for Person Re-identification
    Fu, Dengpan
    Chen, Dongdong
    Bao, Jianmin
    Yang, Hao
    Yuan, Lu
    Zhang, Lei
    Li, Houqiang
    Chen, Dong
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 14745 - 14754
  • [27] Unsupervised Person Re-Identification Based on Measurement Axis
    Li, Jiahan
    Cheng, Deqiang
    Liu, Ruihang
    Kou, Qiqi
    Zhao, Kai
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 379 - 383
  • [28] Unsupervised Person Re-Identification Based on Intermediate Domains
    Jiao, Haijie
    Ding, Mengyuan
    Zhang, Shanshan
    FOURTEENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING, ICGIP 2022, 2022, 12705
  • [29] Unsupervised Person Re-Identification With Stochastic Training Strategy
    Liu, Tianyang
    Lin, Yutian
    Du, Bo
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 4240 - 4250
  • [30] Implicit Sample Extension for Unsupervised Person Re-Identification
    Zhang, Xinyu
    Li, Dongdong
    Wang, Zhigang
    Wang, Jian
    Ding, Errui
    Shi, Javen Qinfeng
    Zhang, Zhaoxiang
    Wang, Jingdong
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 7359 - 7368