Discriminative Representation Learning with Supervised Auto-encoder

被引:10
|
作者
Du, Fang [1 ]
Zhang, Jiangshe [1 ]
Ji, Nannan [2 ]
Hu, Junying [1 ]
Zhang, Chunxia [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
[2] Changan Univ, Dept Mathmat & Informat Sci, Xian 710046, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Supervised learning; Auto-encoder; De-noising;
D O I
10.1007/s11063-018-9828-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Auto-encoders have been proved to be powerful unsupervised learning methods that able to extract useful features from input data or construct deep artificial neural networks by recent studies. In such settings, the extracted features or the initialized networks only learn the data structure while contain no class information which is a disadvantage in classification tasks. In this paper, we aim to leverage the class information of input to learn a reconstructive and discriminative auto-encoder. More specifically, we introduce a supervised auto-encoder that combines the reconstruction error and the classification error to form a unified objective function while taking the noisy concatenate data and label as input. The noisy concatenate input is constructed in such a method that one third has only original data and zero labels, one third has only label and zero data, the last one third has both original data and label. We show that the representations learned by the proposed supervised auto-encoder are more discriminative and more suitable for classification tasks. Experimental results demonstrate that our model outperforms many existing learning algorithms.
引用
收藏
页码:507 / 520
页数:14
相关论文
共 50 条
  • [31] Deep Representation Learning for Code Smells Detection using Variational Auto-Encoder
    Hadj-Kacem, Mouna
    Bouassida, Nadia
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [32] Intrusion Detection System using Semi-Supervised Learning with Adversarial Auto-encoder
    Hara, Kazuki
    Shiomoto, Kohei
    NOMS 2020 - PROCEEDINGS OF THE 2020 IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM 2020: MANAGEMENT IN THE AGE OF SOFTWARIZATION AND ARTIFICIAL INTELLIGENCE, 2020,
  • [33] VAEEG: Variational auto-encoder for extracting EEG representation
    Zhao, Tong
    Cui, Yi
    Ji, Taoyun
    Luo, Jiejian
    Li, Wenling
    Jiang, Jun
    Gao, Zaifen
    Hu, Wenguang
    Yan, Yuxiang
    Jiang, Yuwu
    Hong, Bo
    NEUROIMAGE, 2024, 304
  • [34] Stacked Fusion Supervised Auto-encoder with an Additional Classification Layer
    Li, Rui
    Wang, Xiaodan
    Quan, Wen
    Lei, Lei
    NEURAL PROCESSING LETTERS, 2020, 51 (03) : 2649 - 2667
  • [35] Online deep learning based on auto-encoder
    Zhang, Si-si
    Liu, Jian-wei
    Zuo, Xin
    Lu, Run-kun
    Lian, Si-ming
    APPLIED INTELLIGENCE, 2021, 51 (08) : 5420 - 5439
  • [36] Auto-Encoder based Structured Dictinoary Learning
    Liu, Deyin
    Wu, Yuanbo Lin
    Liu, Liangchen
    Hu, Qichang
    Qi, Lin
    2020 IEEE 22ND INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2020,
  • [37] SDDRS: Stacked Discriminative Denoising Auto-Encoder based Recommender System
    Wang, Kai
    Xu, Lei
    Huang, Ling
    Wang, Chang-Dong
    Lai, Jian-Huang
    COGNITIVE SYSTEMS RESEARCH, 2019, 55 : 164 - 174
  • [38] Dual discriminative auto-encoder network for zero shot image recognition
    Bai H.
    Zhang H.
    Wang Q.
    Journal of Intelligent and Fuzzy Systems, 2021, 40 (03): : 5159 - 5170
  • [39] Stacked Fusion Supervised Auto-encoder with an Additional Classification Layer
    Rui Li
    Xiaodan Wang
    Wen Quan
    Lei Lei
    Neural Processing Letters, 2020, 51 : 2649 - 2667
  • [40] INFORMATION THEORETIC-LEARNING AUTO-ENCODER
    Santana, Eder
    Emigh, Matthew
    Principe, Jose C.
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 3296 - 3301