Synthesis of Nitrogen and Phosphorus Dual-Doped Graphene Oxide as High-Performance Anode Material for Lithium-Ion Batteries

被引:12
|
作者
Wang, Ke [1 ]
Li, Zhi [2 ]
机构
[1] Jiaozuo Power Supply Co, State Grid Henan Elect Power Co, Jiaozuo 454003, Henan, Peoples R China
[2] Henan Zhongneng Photovolta Construct Co Ltd, Jiaozuo 454003, Henan, Peoples R China
关键词
Graphene Oxide; Dual-Doped; Lithium-Ion Battery; Anode Materials; POROUS GRAPHENE; NANOSHEETS;
D O I
10.1166/jnn.2020.18872
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nitrogen and phosphorus dual-doped graphene oxide was prepared by directly calcining a mixture of pure graphene oxide, urea (nitrogen source), and 1,2-bis(diphenylphosphino)methane (phosphorous source). The morphology and composition of the obtained dual-doped graphene oxide were confirmed by SEM, TEM, XRD pattern, Raman spectrum, and XPS. The nitrogen and phosphorous dual-doped graphene oxide was tested as an anode material of lithium-ion batteries (LIBs). The cycle and rate performance of the dual-doped graphene oxide were also examined. The dual-doped graphene oxide exhibited a superior initial discharge capacity of 2796 mAh . g(-1) and excellent reversible capacity of 1200 mAh . g(-1) at a current density of 100 mA . g(-1) after 200 charge/discharge cycles, suggesting that the dual-doping of nitrogen and phosphorous is an effective way to enhance lithium-ion storage for graphene oxide.
引用
收藏
页码:7673 / 7679
页数:7
相关论文
共 50 条
  • [21] High Performance Nitrogen-Doped Si/C as the Anode Material of Lithium-Ion Batteries
    An Jin Ying
    Xin Yuan
    Lian Jin
    Hao Tan
    Runguang Tang
    Russian Journal of Electrochemistry, 2022, 58 : 136 - 142
  • [22] High Performance Nitrogen-Doped Si/C as the Anode Material of Lithium-Ion Batteries
    Ying, Jin
    Yuan, An
    Jin, Xin
    Tan, Lian
    Tang, Hao
    Sun, Runguang
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2022, 58 (02) : 136 - 142
  • [23] Nitrogen-doped graphene oxide/cupric oxide as an anode material for lithium ion batteries
    Pan, Yue
    Ye, Ke
    Cao, Dianxue
    Li, Yiju
    Dong, Yuanyuan
    Niu, Tengteng
    Zeng, Weijia
    Wang, Guiling
    RSC ADVANCES, 2014, 4 (110) : 64756 - 64762
  • [24] Nanostructured Phosphorus Doped Silicon/Graphite Composite as Anode for High-Performance Lithium-Ion Batteries
    Huang, Shiqiang
    Cheong, Ling-Zhi
    Wang, Deyu
    Shen, Cai
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (28) : 23672 - 23678
  • [25] Synthesis of macroporous carbon materials as anode material for high-performance lithium-ion batteries
    Fu, Yuan-Xiang
    Pei, Xian-Yinan
    Mo, Dong-Chuan
    Lyu, Shu-Shen
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2019, 30 (05) : 5092 - 5097
  • [26] A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries
    Jin Li
    Juan-Yu Yang
    Jian-Tao Wang
    Shi-Gang Lu
    Rare Metals, 2019, 38 : 199 - 205
  • [27] A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries
    Jin Li
    Juan-Yu Yang
    Jian-Tao Wang
    Shi-Gang Lu
    RareMetals, 2019, 38 (03) : 199 - 205
  • [28] Synthesis of macroporous carbon materials as anode material for high-performance lithium-ion batteries
    Yuan-Xiang Fu
    Xian-Yinan Pei
    Dong-Chuan Mo
    Shu-Shen Lyu
    Journal of Materials Science: Materials in Electronics, 2019, 30 : 5092 - 5097
  • [29] A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries
    Li, Jin
    Yang, Juan-Yu
    Wang, Jian-Tao
    Lu, Shi-Gang
    RARE METALS, 2019, 38 (03) : 199 - 205
  • [30] Manganese ferrite-graphene nanocomposite as a high-performance anode material for lithium-ion batteries
    Zeng, Guiyu
    Zhang, Juan
    Fu, Yuyong
    Nie, Fude
    Wang, Xin
    INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2015, 106 (08) : 915 - 918