Towards blended rational interpolation of multi-fidelity antenna data

被引:0
|
作者
Cuyt, Annie [1 ]
Louw, Ridalise [2 ]
Segers, Christophe [1 ]
de Villiers, Dirk [2 ]
机构
[1] Univ Antwerp, Dept WIS INF, Middelheimlaan 1, B-2020 Antwerp, Belgium
[2] Stellenbosch Univ, Elect & Elect Engn, Private Bag X1, ZA-7602 Matieland, South Africa
基金
新加坡国家研究基金会;
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Over the past few years there is a clear trend towards design exploration using mathematical modelling. The data sets generated for this purpose may be huge and/or expensive. We describe how rational interpolation can be useful in this respect. In our exploration we focus on the univariate case, although all models can easily be generalized to a multivariate setting when the multivariate data sets are tensor (grid) structured. The example we include models the impedance of a pyramidal sinuous antenna.
引用
收藏
页码:1045 / 1048
页数:4
相关论文
共 50 条
  • [41] A multi-fidelity surrogate modeling method in the presence of non-hierarchical low-fidelity data
    Chen, Hui
    Ouyang, Linhan
    Liu, Lijun
    Ma, Yizhong
    AEROSPACE SCIENCE AND TECHNOLOGY, 2024, 146
  • [42] Multi-fidelity analysis and uncertainty quantification of beam vibration using co-kriging interpolation method
    Krishnan, K. V. Vishal
    Ganguli, Ranjan
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 398
  • [43] Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling
    Perdikaris, P.
    Raissi, M.
    Damianou, A.
    Lawrence, N. D.
    Karniadakis, G. E.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 473 (2198):
  • [44] MFNets: MULTI-FIDELITY DATA-DRIVEN NETWORKS FOR BAYESIAN LEARNING AND PREDICTION
    Gorodetsky, Alex A.
    Jakeman, John D.
    Geraci, Gianluca
    Eldred, Michael S.
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2020, 10 (06) : 595 - 622
  • [45] Multi-fidelity data-driven design and analysis of reactor and tube simulations
    Savage, Tom
    Basha, Nausheen
    Mcdonough, Jonathan
    Matar, Omar K.
    Chanona, Ehecatl Antonio del Rio
    COMPUTERS & CHEMICAL ENGINEERING, 2023, 179
  • [46] Multi-fidelity graph neural network for flow field data fusion of turbomachinery
    Li, Jinxing
    Li, Yunzhu
    Liu, Tianyuan
    Zhang, Di
    Xie, Yonghui
    ENERGY, 2023, 285
  • [47] Multi-fidelity Bayesian neural networks for aerodynamic data fusion with heterogeneous uncertainties
    Xie, Fangfang
    Zhang, Xinshuai
    Wu, Shihao
    Ji, Tingwei
    Zheng, Yao
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 435
  • [48] A generalized hierarchical co-Kriging model for multi-fidelity data fusion
    Qi Zhou
    Yuda Wu
    Zhendong Guo
    Jiexiang Hu
    Peng Jin
    Structural and Multidisciplinary Optimization, 2020, 62 : 1885 - 1904
  • [49] A generalized hierarchical co-Kriging model for multi-fidelity data fusion
    Zhou, Qi
    Wu, Yuda
    Guo, Zhendong
    Hu, Jiexiang
    Jin, Peng
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2020, 62 (04) : 1885 - 1904
  • [50] Characterising harmful data sources when constructing multi-fidelity surrogate models
    Andres-Thio, Nicolau
    Munoz, Mario Andres
    Smith-Miles, Kate
    ARTIFICIAL INTELLIGENCE, 2024, 336