Towards blended rational interpolation of multi-fidelity antenna data

被引:0
|
作者
Cuyt, Annie [1 ]
Louw, Ridalise [2 ]
Segers, Christophe [1 ]
de Villiers, Dirk [2 ]
机构
[1] Univ Antwerp, Dept WIS INF, Middelheimlaan 1, B-2020 Antwerp, Belgium
[2] Stellenbosch Univ, Elect & Elect Engn, Private Bag X1, ZA-7602 Matieland, South Africa
基金
新加坡国家研究基金会;
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Over the past few years there is a clear trend towards design exploration using mathematical modelling. The data sets generated for this purpose may be huge and/or expensive. We describe how rational interpolation can be useful in this respect. In our exploration we focus on the univariate case, although all models can easily be generalized to a multivariate setting when the multivariate data sets are tensor (grid) structured. The example we include models the impedance of a pyramidal sinuous antenna.
引用
收藏
页码:1045 / 1048
页数:4
相关论文
共 50 条
  • [1] Extended Co-Kriging interpolation method based on multi-fidelity data
    Xiao, Manyu
    Zhang, Guohua
    Breitkopf, Piotr
    Villon, Pierre
    Zhang, Weihong
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 323 : 120 - 131
  • [2] Multi-fidelity Bayesian algorithm for antenna optimization
    Li, Jianxing
    Yang, An
    Tian, Chunming
    Ye, Le
    Chen, Badong
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2022, 33 (06) : 1119 - 1126
  • [3] Multi-fidelity Bayesian algorithm for antenna optimization
    LI Jianxing
    YANG An
    TIAN Chunming
    YE Le
    CHEN Badong
    Journal of Systems Engineering and Electronics, 2022, 33 (06) : 1119 - 1126
  • [4] Models and algorithms for multi-fidelity data
    Forbes, Alistair B.
    ADVANCED MATHEMATICAL AND COMPUTATIONAL TOOLS IN METROLOGY AND TESTING XI, 2019, 89 : 178 - 185
  • [5] Multi-fidelity data-adaptive autonomous seakeeping
    Levine, Michael D.
    Edwards, Samuel J.
    Howard, Dayne
    Weems, Kenneth
    Sapsis, Themistoklis P.
    Pipiras, Vladas
    OCEAN ENGINEERING, 2024, 292
  • [6] A sequential multi-fidelity metamodeling approach for data regression
    Zhou, Qi
    Wang, Yan
    Choi, Seung-Kyum
    Jiang, Ping
    Shao, Xinyu
    Hu, Jiexiang
    KNOWLEDGE-BASED SYSTEMS, 2017, 134 : 199 - 212
  • [7] Towards a multi-fidelity & multi-objective Bayesian optimization efficient algorithm
    Charayron, Remy
    Lefebvre, Thierry
    Bartoli, Nathalie
    Morlier, Joseph
    AEROSPACE SCIENCE AND TECHNOLOGY, 2023, 142
  • [8] Remarks on multi-fidelity surrogates
    Chanyoung Park
    Raphael T. Haftka
    Nam H. Kim
    Structural and Multidisciplinary Optimization, 2017, 55 : 1029 - 1050
  • [9] A combined modeling method for complex multi-fidelity data fusion
    Tang, Lei
    Liu, Feng
    Wu, Anping
    Li, Yubo
    Jiang, Wanqiu
    Wang, Qingfeng
    Huang, Jun
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (03):
  • [10] Multi-fidelity surrogate models for VPP aerodynamic input data
    Peart, Tanya
    Aubin, Nicolas
    Nava, Stefano
    Cater, John
    Norris, Stuart
    Journal of Sailing Technology, 2021, 6 (01): : 21 - 43