EVOLUTIONARY SPECTRAL GRAPH CLUSTERING THROUGH SUBSPACE DISTANCE MEASURE

被引:0
|
作者
Al-Sharoa, Esraa [1 ]
Aviyente, Selin [1 ]
机构
[1] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA
关键词
Evolutionary clustering; Spectral clustering; subspace-distance; k-means;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the era of Big Data, massive amounts of high-dimensional data are increasingly gathered. Much of this is streaming big data that is either not stored or stored only for short periods of time. Examples include cell phone conversations, texts, tweets, network traffic, changing Facebook connections, mobile video chats or video surveillance data. It is important to be able to reduce the dimensionality of this data in a streaming fashion. One common way of reducing the dimensionality of data is through clustering. Evolutionary clustering provides a framework to cluster the data at each time point such that the cluster assignments change smoothly across time. In this paper, an evolutionary spectral clustering approach is proposed for community detection in dynamic networks. The proposed method tries to obtain smooth cluster assignments by minimizing the subspace distance between consecutive time points, where the subspaces are defined through spectral embedding. The algorithm is evaluated on several synthetic and real data sets, and the results show the improvement in performance over traditional spectral clustering and state of the art evolutionary clustering algorithms.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] A similarity measure based on subspace distance for spectral clustering
    Naseri, Nadimeh
    Eftekhari, Mahdi
    Saberi-Movahed, Farid
    Radjabalipour, Mehdi
    Belanche, Lluis A.
    NEUROCOMPUTING, 2025, 620
  • [2] Reeb graph computation through spectral clustering
    Ma, Teng
    Wu, Zhuangzhi
    Luo, Pei
    Feng, Lu
    OPTICAL ENGINEERING, 2012, 51 (01)
  • [3] On evolutionary subspace clustering with symbiosis
    Vahdat A.
    Heywood M.I.
    Evolutionary Intelligence, 2014, 6 (4) : 229 - 256
  • [4] Iterative Evolutionary Subspace Clustering
    Boudjeloud-Assala, Lydia
    Blansche, Alexandre
    NEURAL INFORMATION PROCESSING, ICONIP 2012, PT I, 2012, 7663 : 424 - 431
  • [5] Symbiotic Evolutionary Subspace Clustering
    Vahdat, Ali
    Heywood, Malcolm I.
    Zincir-Heywood, A. Nur
    2012 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2012,
  • [6] A local mean-based distance measure for spectral clustering
    Hassan Motallebi
    Rabeeh Nasihatkon
    Mina Jamshidi
    Pattern Analysis and Applications, 2022, 25 : 351 - 359
  • [7] A local mean-based distance measure for spectral clustering
    Motallebi, Hassan
    Nasihatkon, Rabeeh
    Jamshidi, Mina
    PATTERN ANALYSIS AND APPLICATIONS, 2022, 25 (02) : 351 - 359
  • [8] Spectral Clustering by Subspace Randomization and Graph Fusion for High-Dimensional Data
    Cai, Xiaosha
    Huang, Dong
    Wang, Chang-Dong
    Kwoh, Chee-Keong
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2020, PT I, 2020, 12084 : 330 - 342
  • [9] Graph regularized spatial-spectral subspace clustering for hyperspectral band selection
    Wang, Jun
    Tang, Chang
    Zheng, Xiao
    Liu, Xinwang
    Zhang, Wei
    Zhu, En
    NEURAL NETWORKS, 2022, 153 : 292 - 302
  • [10] Spatial-Spectral Adaptive Graph Convolutional Subspace Clustering for Hyperspectral Image
    Liu, Yuqi
    Zhu, Enshuo
    Wang, Qinghe
    Li, Junhong
    Liu, Shujun
    Hu, Yaowen
    Han, Yuhang
    Zhou, Guoxiong
    Guan, Renxiang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 1139 - 1152