A similarity measure based on subspace distance for spectral clustering

被引:0
|
作者
Naseri, Nadimeh [1 ]
Eftekhari, Mahdi [2 ]
Saberi-Movahed, Farid [3 ]
Radjabalipour, Mehdi [1 ,4 ]
Belanche, Lluis A. [5 ]
机构
[1] Shahid Bahonar Univ Kerman, Fac Math & Comp, Dept Pure Math, Kerman, Iran
[2] Shahid Bahonar Univ Kerman, Dept Comp Engn, Kerman, Iran
[3] Grad Univ Adv Technol, Fac Sci & Modern Technol, Dept Appl Math, Kerman, Iran
[4] Iranian Acad Sci, Tehran, Iran
[5] Univ Politecn Cataluna, Dept Comp Sci, Barcelona, Catalonia, Spain
关键词
Subspace learning; Similarity learning; Subspace distance; Unsupervised learning; Spectral clustering; ALGORITHM;
D O I
10.1016/j.neucom.2024.129187
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The performance of Spectral Clustering (SC) relies heavily on the choice of similarity matrix used to compute pairwise similarities between data points, especially when handling data distributed across multiple subspaces. Despite the effectiveness of subspace learning methods in identifying clusters within high-dimensional data, their integration into SC is often limited. Specifically, a majority of SC techniques rooted in subspace learning either lack efficient similarity metrics or encounter difficulties in uncovering clusters within datasets that share common subspaces. To address these concerns, this paper introduces a novel similarity metric, termed Similarity Measure based on the Distance of Subspaces (SMDS). The proposed SMDS criterion yields three key advantages. Firstly, SMDS involves identifying the local neighborhood of each sample, which typically exerts a stronger influence than global factors. Secondly, it employs subspace learning, leveraging the fact that estimating small linear subspaces is computationally more tractable than handling larger and more complex ones. Thirdly, it introduces a novel subspace clustering approach by establishing a similarity matrix based on subspace distance. This property effectively addresses the challenges posed by overlapping subspaces and facilitates their merging. Moving forward, this novel SMDS similarity matrix is then utilized within SC, leading to the proposal of SC-SMDS, anew method tailored for clustering tasks. The SC-SMDS method is evaluated through various experiments on a number of real-world benchmark datasets, demonstrating its superior performance over several competing clustering methods.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] EVOLUTIONARY SPECTRAL GRAPH CLUSTERING THROUGH SUBSPACE DISTANCE MEASURE
    Al-Sharoa, Esraa
    Aviyente, Selin
    2016 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2016,
  • [2] Improved Spectral Clustering Algorithm Based on Similarity Measure
    Yan, Jun
    Cheng, Debo
    Zong, Ming
    Deng, Zhenyun
    ADVANCED DATA MINING AND APPLICATIONS, ADMA 2014, 2014, 8933 : 641 - 654
  • [3] Improved spectral clustering algorithm based on similarity measure
    Cheng, Debo, 1600, Springer Verlag (8933):
  • [4] Fuzzy partition based similarity measure for spectral clustering
    1600, Science and Engineering Research Support Society (09):
  • [5] Spectral clustering with fuzzy similarity measure
    Zhao, Feng
    Liu, Hanqiang
    Jiao, Licheng
    DIGITAL SIGNAL PROCESSING, 2011, 21 (06) : 701 - 709
  • [6] SPECTRAL CLUSTERING WITH A NEW SIMILARITY MEASURE
    Pan, Donghua
    Li, Juan
    2011 3RD INTERNATIONAL CONFERENCE ON COMPUTER TECHNOLOGY AND DEVELOPMENT (ICCTD 2011), VOL 3, 2012, : 437 - 441
  • [7] Enhanced Similarity Measure for Sparse Subspace Clustering Method
    Hechmi, Sabra
    Gallas, Abir
    Zagrouba, Ezzeddine
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2017, PT I, 2017, 10305 : 291 - 301
  • [8] Spectral clustering based on the local similarity measure of shared neighbors
    Cao, Zongqi
    Chen, Hongjia
    Wang, Xiang
    ETRI JOURNAL, 2022, 44 (05) : 769 - 779
  • [9] A Max-Flow-Based Similarity Measure for Spectral Clustering
    Cao, Jiangzhong
    Chen, Pei
    Zheng, Yun
    Dai, Qingyun
    ETRI JOURNAL, 2013, 35 (02) : 311 - 320
  • [10] Robust Similarity Measure for Spectral Clustering Based on Shared Neighbors
    Ye, Xiucai
    Sakurai, Tetsuya
    ETRI JOURNAL, 2016, 38 (03) : 540 - 550