Forecasting with prediction intervals for periodic autoregressive moving average models

被引:28
|
作者
Anderson, Paul L. [1 ]
Meerschaert, Mark M. [2 ]
Zhang, Kai [2 ]
机构
[1] Albion Coll, Albion, MI 49224 USA
[2] Michigan State Univ, E Lansing, MI 48824 USA
关键词
Periodic correlation; autoregressive moving average; forecasting; TIME-SERIES; RIVER FLOWS; LIKELIHOOD; ALGORITHM;
D O I
10.1111/jtsa.12000
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Periodic autoregressive moving average (PARMA) models are indicated for time series whose mean, variance and covariance function vary with the season. In this study, we develop and implement forecasting procedures for PARMA models. Forecasts are developed using the innovations algorithm, along with an idea of Ansley. A formula for the asymptotic error variance is provided, so that Gaussian prediction intervals can be computed. Finally, an application to monthly river flow forecasting is given, to illustrate the method.
引用
收藏
页码:187 / 193
页数:7
相关论文
共 50 条
  • [41] Periodic autoregressive moving average methods based on Fourier representation of periodic coefficients
    Dudek, Anna E.
    Hurd, Harry
    Wojtowicz, Wioletta
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2016, 8 (03): : 130 - 149
  • [42] Periodic stationarity conditions for periodic autoregressive moving average processes as eigenvalue problems
    Ula, TA
    Smadi, AA
    WATER RESOURCES RESEARCH, 1997, 33 (08) : 1929 - 1934
  • [43] Affinity Coefficient for Clustering Autoregressive Moving Average Models
    Nascimento, Ana Paula
    Oliveira, Alexandra
    Faria, Brigida Monica
    Pimenta, Rui
    Vieira, Monica
    Prudencio, Cristina
    Bacelar-Nicolau, Helena
    COMPUTATIONAL AND MATHEMATICAL METHODS, 2024, 2024
  • [44] Unit-Weibull autoregressive moving average models
    Pumi, Guilherme
    Prass, Taiane Schaedler
    Taufemback, Cleiton Guollo
    TEST, 2024, 33 (01) : 204 - 229
  • [45] Generalized discrete autoregressive moving-average models
    Moeller, Tobias A.
    Weiss, Christian H.
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2020, 36 (04) : 641 - 659
  • [46] Unit-Weibull autoregressive moving average models
    Guilherme Pumi
    Taiane Schaedler Prass
    Cleiton Guollo Taufemback
    TEST, 2024, 33 : 204 - 229
  • [48] Generalized autoregressive moving average models with GARCH errors
    Zheng, Tingguo
    Xiao, Han
    Chen, Rong
    JOURNAL OF TIME SERIES ANALYSIS, 2022, 43 (01) : 125 - 146
  • [49] PREDICTIONS OF MULTIVARIATE AUTOREGRESSIVE-MOVING AVERAGE MODELS
    YAMAMOTO, T
    BIOMETRIKA, 1981, 68 (02) : 485 - 492
  • [50] Beta autoregressive fractionally integrated moving average models
    Pumi, Guilherme
    Valk, Marcio
    Bisognin, Cleber
    Bayer, Fabio Mariano
    Prass, Taiane Schaedler
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2019, 200 : 196 - 212