Life Cycle Assessment of Advanced Building Components towards NZEBs

被引:5
|
作者
Antypa, Despoina [1 ]
Petrakli, Foteini [1 ]
Gkika, Anastasia [1 ]
Voigt, Pamela [2 ]
Kahnt, Alexander [2 ]
Boehm, Robert [2 ]
Suchorzewski, Jan [3 ]
Araujo, Andreia [4 ,5 ]
Sousa, Susana [4 ,5 ]
Koumoulos, Elias P. [1 ]
机构
[1] IRES Innovat Res & Engn Solut, Rue Koningin Astridlaan 59B, B-1780 Wemmel, Belgium
[2] Leipzig Univ Appl Sci HTWK Leipzig, Inst Concrete Construction, Fac Civil Engn, PF 30 11 66, D-04251 Leipzig, Germany
[3] RISE Res Inst Sweden, Brinellgatan 4, S-50115 Boras, Sweden
[4] INEGI Inst Sci & Innovat Mech & Ind Engn, Campus FEUP,R Dr Roberto Frias 400, P-4200465 Porto, Portugal
[5] LAETA Associated Lab Energy Transports & Aeronaut, Campus FEUP,R Dr Roberto Frias 400, P-4200465 Porto, Portugal
基金
欧盟地平线“2020”;
关键词
Life Cycle Assessment; sustainability; building components; thermal insulation; NZEB; ENERGY;
D O I
10.3390/su142316218
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The building sector accounts for 40% of the total energy consumed in Europe at annual basis, together with the relevant Greenhouse Gas (GHG) emissions. In order to mitigate these impacts, the concept and establishment of the Nearly Zero Energy Buildings (NZEBs) is under continuous and intensive research. In fact, as the energy used for buildings' operation becomes more efficient, impacts resulting from the buildings' embodied energy become of more importance. Therefore, the selection of building materials and components is of high significance, as these affect the energy performance and potential environmental impacts of the building envelopes. The objective of this study is to perform a preliminary Life Cycle Assessment (LCA) on advanced multifunctional building components, aiming to achieve lower embodied emissions in NZEBs. The advanced components analyzed are composite panels for facade elements of building envelopes, providing thermal efficiency. The design of sustainable building envelope systems is expected to upgrade the overall environmental performance of buildings, including the NZEBs. The findings of this study constitute unambiguous evidence on the need for further research on this topic, as substantial lack of data concerning embodied impacts is presented in literature, adding to the growing discussion on NZEBs at a whole life cycle perspective across Europe. This research has shown that the electricity required from the manufacturing phase of the examined building components is the main contributor to climate change impact and the other environmental categories assessed. Sensitivity analysis that has been performed indicated that the climate change impact is highly depended on the electricity grid energy mix across Europe. Taking into account the current green energy transition by the increase of the renewable energy sources in electricity production, as well as the future upgrade of the manufacturing processes, it is expected that this climate change impact will be mitigated. Finally, the comparison between the CLC thermal insulator and other foam concretes in literature showed that the materials of the building components examined do not present any diversions in terms of environmental impact.
引用
收藏
页数:20
相关论文
共 50 条
  • [11] The assessment of the relevance of building components and life phases for the environmental profile of nearly zero-energy buildings: life cycle assessment of a multifamily building in Italy
    Paleari, Michele
    Lavagna, Monica
    Campioli, Andrea
    INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT, 2016, 21 (12): : 1667 - 1690
  • [12] Evaluation of electronic components in life cycle assessment
    Takayoshi Ueno
    Toru Shiino
    Hiroshi Onishi
    Journal of Material Cycles and Waste Management, 1999, 1 (1): : 25 - 32
  • [13] Life Cycle Assessment applications in the building sector
    Peuportier, Bruno
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL TECHNOLOGY AND MANAGEMENT, 2008, 9 (04) : 334 - 347
  • [14] Artificial intelligence in building life cycle assessment
    Gachkar, Darya
    Gachkar, Sadaf
    Garcia Martinez, Antonio
    Angulo, Cecilio
    Aghlmand, Soheila
    Ahmadi, Javad
    ARCHITECTURAL SCIENCE REVIEW, 2024, 67 (06) : 484 - 502
  • [15] Materials life cycle assessment of a living building
    Gardner, Haley
    Garcia, Julissa
    Hasik, Vaclav
    Olinzock, Maureen
    Banawi, Abdulaziz
    Bilec, Melissa M.
    26TH CIRP CONFERENCE ON LIFE CYCLE ENGINEERING (LCE), 2019, 80 : 458 - 463
  • [16] Sustainable Building Materials and Life Cycle Assessment
    Estokova, Adriana
    Samesova, Dagmar
    SUSTAINABILITY, 2021, 13 (04)
  • [17] Life cycle assessment tool for building assemblies
    Carmody, J.
    Trusty, W.
    Meil, J.
    Lucuik, M.
    PORTUGAL SB07 - SUSTAINABLE CONSTRUCTION, MATERIALS AND PRACTICES: CHALLENGE OF THE INDUSTRY FOR THE NEW MILLENNIUM, PTS 1 AND 2, 2007, : 334 - +
  • [18] Analysis of the models for life cycle assessment of the building and building products
    Taygun, Goekce Tuna
    Balanli, Ayse
    ENVIRONMENTAL ENGINEERING AND MANAGEMENT JOURNAL, 2007, 6 (01): : 59 - 64
  • [19] ?n integrated life cycle assessment and life cycle costing approach towards sustainable building renovation via a dynamic online tool
    Apostolopoulos, Vasilis
    Mamounakis, Ioannis
    Seitaridis, Andreas
    Tagkoulis, Nikolas
    Kourkoumpas, Dimitrios-Sotirios
    Iliadis, Petros
    Angelakoglou, Komninos
    Nikolopoulos, Nikolaos
    APPLIED ENERGY, 2023, 334
  • [20] Impact of building service life models on life cycle assessment
    Grant, Aneurin
    Ries, Robert
    BUILDING RESEARCH AND INFORMATION, 2013, 41 (02): : 168 - 186