Using remote sensing for agricultural statistics

被引:1
|
作者
Carfagna, E [1 ]
Gallego, FJ
机构
[1] Univ Bologna, Dept Stat, I-40126 Bologna, Italy
[2] Joint Res Ctr, Ispra, Va, Italy
关键词
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Remote sensing can be a valuable tool for agricultural statistics when area frames or multiple frames are used. At the design level, remote sensing typically helps in the definition of sampling units and the stratification, but can also be exploited to optimise the sample allocation and size of sampling units. At the estimator level, classified satellite images are generally used as auxiliary variables in a regression estimator or for estimators based on confusion matrixes. The most often used satellite images are LANDSAT-TM and SPOT-XS. In general, classified or photo-interpreted images should not be directly used to estimate crop areas because the proportion of pixels classified into the specific crop is often strongly biased. Vegetation indexes computed from satellite images can give in some cases a good indication of the potential crop yield.
引用
收藏
页码:389 / 404
页数:16
相关论文
共 50 条
  • [21] Integrating spatial statistics and remote sensing
    Stein, A
    Bastiaanssen, WGM
    De Bruin, S
    Cracknell, AP
    Curran, PJ
    Fabbri, AG
    Gorte, BGH
    Van Groenigen, JW
    Van der Meer, FD
    Saldana, A
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 1998, 19 (09) : 1793 - 1814
  • [22] Improvements to Remote Sensing Using Fuzzy Classification, Graphs and Accuracy Statistics
    Daniel Gómez
    Javier Montero
    Gregory Biging
    [J]. Pure and Applied Geophysics, 2008, 165 : 1555 - 1575
  • [23] Improvements to Remote Sensing Using Fuzzy Classification, Graphs and Accuracy Statistics
    Gomez, Daniel
    Montero, Javier
    Biging, Gregory
    [J]. PURE AND APPLIED GEOPHYSICS, 2008, 165 (08) : 1555 - 1575
  • [24] Status and prospect of agricultural remote sensing
    Shi, Zhou
    Liang, Zongzheng
    Yang, Yuanyuan
    Guo, Yan
    [J]. Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2015, 46 (02): : 247 - 260
  • [25] Remote Sensing Analysis of Agricultural Drone
    S. Meivel
    S. Maheswari
    [J]. Journal of the Indian Society of Remote Sensing, 2021, 49 : 689 - 701
  • [26] Remote Sensing Analysis of Agricultural Drone
    Meivel, S.
    Maheswari, S.
    [J]. JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2021, 49 (03) : 689 - 701
  • [27] Estimating agricultural water productivity using remote sensing derived data
    Safi, Celine
    Pareeth, Sajid
    Yalew, Seleshi
    van der Zaag, Pieter
    Mul, Marloes
    [J]. MODELING EARTH SYSTEMS AND ENVIRONMENT, 2024, 10 (01) : 1203 - 1213
  • [28] Improved method for discriminating agricultural crops using geostatistics and remote sensing
    Fiorentino, Costanza
    Tarantino, Cristina
    Pasquariello, Guido
    Basso, Bruno
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2011, 5
  • [29] Estimating agricultural water productivity using remote sensing derived data
    Celine Safi
    Sajid Pareeth
    Seleshi Yalew
    Pieter van der Zaag
    Marloes Mul
    [J]. Modeling Earth Systems and Environment, 2024, 10 : 1203 - 1213
  • [30] Potential for remote sensing from agricultural aircraft using digital video
    Thomson, SJ
    Zimba, PV
    Bryson, CT
    Alarcon-Calderon, VJ
    [J]. APPLIED ENGINEERING IN AGRICULTURE, 2005, 21 (03) : 531 - 537