The fractional-order unified chaotic system: A general cascade synchronization method and application

被引:7
|
作者
An, Hongli [1 ]
Feng, Dali [1 ]
Sun, Li [1 ]
Zhu, Haixing [2 ]
机构
[1] Nanjing Agr Univ, Coll Sci, Nanjing 210095, Peoples R China
[2] Nanjing Forestry Univ, Coll Econ & Management, Nanjing 210037, Peoples R China
来源
AIMS MATHEMATICS | 2020年 / 5卷 / 05期
基金
中国国家自然科学基金;
关键词
synchronization; chaos synchronization; cascade synchronization; fractional-order unified chaotic system; ADAPTIVE SYNCHRONIZATION; ROSSLER;
D O I
10.3934/math.2020277
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we extend the cascade synchronization of integer-order chaotic systems to function cascade synchronization of fractional-order chaotic systems. The nice feature of our method is that a fractional-order chaotic system will synchronize to another system via a scaling function. The rich choices of the scaling function turn our method more general than some existing methods. As applications, we take a fractional-order unified chaotic system as an illustrative example to test the effectiveness.
引用
收藏
页码:4345 / 4356
页数:12
相关论文
共 50 条
  • [41] A New Fractional-order Chaotic System and its Synchronization Control
    Shan, Liang
    Liu, Zhong
    Li, Jun
    Wang, Zhiquan
    PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 5918 - 5922
  • [42] Q-S synchronization of the fractional-order unified system
    YI CHAI
    LIPING CHEN
    RANCHAO WU
    JUAN DAI
    Pramana, 2013, 80 : 449 - 461
  • [43] A new fractional-order hyperchaotic system and it's chaotic synchronization
    Zhou Ping
    Cheng Xue-Feng
    Zhang Nian-Ying
    ACTA PHYSICA SINICA, 2008, 57 (09) : 5407 - 5412
  • [44] CHAOTIC SYNCHRONIZATION OF FRACTIONAL-ORDER SPATIOTEMPORAL COUPLED LORENZ SYSTEM
    Wang, Xing-Yuan
    Zhang, Hao
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2012, 23 (10):
  • [45] Projective synchronization and parameter identification of a fractional-order chaotic system
    Kong De-fu
    Zhao Xiao-shan
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING AND INTELLIGENT SYSTEMS (ICMEIS 2015), 2015, 26 : 880 - 883
  • [46] Linear control for mixed synchronization of a fractional-order chaotic system
    Li, Chun-Lai
    Han, Qing-Tao
    Xiong, Jian-Bin
    OPTIK, 2016, 127 (15): : 6129 - 6133
  • [47] Chaotic fractional-order Coullet system: Synchronization and control approach
    Shahiri, M.
    Ghaderi, R.
    Ranjbar N, A.
    Hosseinnia, S. H.
    Momani, S.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (03) : 665 - 674
  • [48] Synchronization of the Fractional-Order Brushless DC Motors Chaotic System
    Shen, Shiyun
    Zhou, Ping
    JOURNAL OF CONTROL SCIENCE AND ENGINEERING, 2016, 2016
  • [49] Adaptive robust synchronization of fractional-order chaotic system with disturbance
    Feng, Ming-Ku
    Wang, Xing-Yuan
    Wei, Qiang
    JOURNAL OF VIBRATION AND CONTROL, 2015, 21 (11) : 2259 - 2265
  • [50] Stability and Synchronization of a Fractional-Order Unified System with Complex Variables
    Xie, Yanyun
    Cai, Wenliang
    Wang, Jing
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2024, 2024