A Decomposition Algorithm for the Sums of the Largest Eigenvalues

被引:2
|
作者
Huang, Ming [1 ,2 ]
Lu, Yue [3 ]
Yuan, Jin Long [1 ]
Li, Yang [4 ]
机构
[1] Dalian Maritime Univ, Sch Sci, Dalian, Peoples R China
[2] Dalian Univ Technol, Sch Control Sci & Engn, Dalian, Peoples R China
[3] Tianjin Normal Univ, Sch Math Sci, Tianjin, Peoples R China
[4] Dalian Minzu Univ, Coll Sci, Dalian, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
VU-decomposition; U-Lagrangian; nonsmooth optimization; second-order derivative; smooth track; sum of eigenvalues; OPTIMIZATION;
D O I
10.1080/01630563.2020.1813758
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we consider optimization problems in which the sums of the largest eigenvalues of symmetric matrices are involved. Considered as functions of a symmetric matrix, the eigenvalues are not smooth once the multiplicity of the function is not single; this brings some difficulties to solve. For this, the function of the sums of the largest eigenvalues with affine matrix-valued mappings is handled through the application of the U-Lagrangian theory. Such theory extends the corresponding conclusions for the largest eigenvalue function in the literature. Inspired VU-space decomposition, the first- and second-order derivatives of U-Lagrangian in the space of decision variables R-m are proposed when some regular condition is satisfied. Under this condition, we can use the vectors of V-space to generate an implicit function, from which a smooth trajectory tangent to U can be defined. Moreover, an algorithm framework with superlinear convergence can be presented. Finally, we provide an application about arbitrary eigenvalue which is usually a class of DC functions to verify the validity of our approach.
引用
收藏
页码:1936 / 1969
页数:34
相关论文
共 50 条
  • [31] ON THE SUM OF THE LARGEST EIGENVALUES OF A SYMMETRICAL MATRIX
    OVERTON, ML
    WOMERSLEY, RS
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1992, 13 (01) : 41 - 45
  • [32] On the largest eigenvalues of trees with perfect matchings
    Wenshui Lin
    Xiaofeng Guo
    Journal of Mathematical Chemistry, 2007, 42 : 1057 - 1067
  • [33] Some bounds on the largest eigenvalues of graphs
    Li, Shuchao
    Tian, Yi
    APPLIED MATHEMATICS LETTERS, 2012, 25 (03) : 326 - 332
  • [34] Eigenvalues of Sums and Differences of Idempotent Matrices
    Baksalary, Oskar Maria
    Trenkler, Goetz
    AMERICAN MATHEMATICAL MONTHLY, 2012, 119 (02): : 162 - 163
  • [35] Diamagnetic behavior of sums Dirichlet eigenvalues
    Erdös, L
    Loss, M
    Vougalter, V
    ANNALES DE L INSTITUT FOURIER, 2000, 50 (03) : 891 - +
  • [36] Collapsing of connected sums and the eigenvalues of the Laplacian
    Takahashi, J
    JOURNAL OF GEOMETRY AND PHYSICS, 2002, 40 (3-4) : 201 - 208
  • [37] Power sums of Hecke eigenvalues and application
    Wu, J.
    ACTA ARITHMETICA, 2009, 137 (04) : 333 - 344
  • [38] On sums of eigenvalues of elliptic operators on manifolds
    El Soufi, Ahmad
    Harrell, Evans M., II
    Ilias, Said
    Stubbe, Joachim
    JOURNAL OF SPECTRAL THEORY, 2017, 7 (04) : 985 - 1022
  • [39] A lower bound for sums of eigenvalues of the Laplacian
    Melas, AD
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (02) : 631 - 636
  • [40] Integral power sums of Hecke eigenvalues
    Lau, Y. -K.
    Lu, G. -S.
    Wu, J.
    ACTA ARITHMETICA, 2011, 150 (02) : 193 - 207