Application of one-step method to parameter estimation in ODE models

被引:9
|
作者
Dattner, Itai [1 ]
Gugushvili, Shota [2 ]
机构
[1] Univ Haifa, Dept Stat, 199 Aba Khoushy Ave, IL-3498838 Haifa, Israel
[2] Leiden Univ, Math Inst, POB 9512, NL-2300 RA Leiden, Netherlands
基金
欧洲研究理事会;
关键词
non-linear least squares; ordinary differential equations; smooth and match estimator; integral estimator; Levenberg-Marquardt algorithm; one-step estimator; DIFFERENTIAL-EQUATIONS; EFFICIENT ESTIMATION; DYNAMICAL-SYSTEMS; IDENTIFICATION; OPTIMIZATION; INTEGRATION; INFERENCES; STABILITY;
D O I
10.1111/stan.12124
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study application of Le Cam's one-step method to parameter estimation in ordinary differential equation models. This computationally simple technique can serve as an alternative to numerical evaluation of the popular non-linear least squares estimator, which typically requires the use of a multistep iterative algorithm and repetitive numerical integration of the ordinary differential ev quation system. The one-step method starts from a preliminary root n-consistent estimator of the parameter of interest and next turns it into an asymptotic (as the sample size n -> infinity) equivalent of the least squares estimator through a numerically straightforward procedure. We demonstrate performance of the one-step estimator via extensive simulations and real data examples. The method enables the researcher to obtain both point and interval estimates. The preliminary root n-consistent estimator that we use depends on non-parametric smoothing, and we provide a data-driven methodology for choosing its tuning parameter and support it by theory. An easy implementation scheme of the one-step method for practical use is pointed out.
引用
收藏
页码:126 / 156
页数:31
相关论文
共 50 条
  • [21] A subsystems approach for parameter estimation of ODE models of hybrid systems
    Georgoulas, Anastasis
    Clark, Allan
    Ocone, Andrea
    Gilmore, Stephen
    Sanguinetti, Guido
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2012, (92): : 30 - 41
  • [22] Application of the one-step integration method for determination of the regional gravimetric geoid
    Goli, Mehdi
    Foroughi, Ismael
    Novak, Pavel
    JOURNAL OF GEODESY, 2019, 93 (09) : 1631 - 1644
  • [23] Application of the one-step integration method for determination of the regional gravimetric geoid
    Mehdi Goli
    Ismael Foroughi
    Pavel Novák
    Journal of Geodesy, 2019, 93 : 1631 - 1644
  • [24] A communication efficient distributed one-step estimation
    Yuan, Lili
    Yin, Xianjun
    Gai, Yujie
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2024, 633
  • [25] GLOBAL ERROR ESTIMATION WITH ONE-STEP METHODS
    SHAMPINE, LF
    COMPUTERS & MATHEMATICS WITH APPLICATIONS-PART A, 1986, 12 (07): : 885 - 894
  • [26] One-Step Estimation with Scaled Proximal Methods
    Bassett, Robert
    Deride, Julio
    MATHEMATICS OF OPERATIONS RESEARCH, 2022, 47 (03) : 2366 - 2386
  • [27] A ONE-STEP METHOD OF CONJUGATE DIRECTIONS
    MANEVICH, AI
    POLYANCHIKOV, PI
    SOVIET JOURNAL OF COMPUTER AND SYSTEMS SCIENCES, 1985, 23 (02): : 14 - 20
  • [28] One-step minimum Hellinger distance estimation
    Karunamuni, Rohana J.
    Wu, Jingjing
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (12) : 3148 - 3164
  • [29] One-step Semiparametric Estimation of the GARCH Model
    Di, Jianing
    Gangopadhyay, Ashis
    JOURNAL OF FINANCIAL ECONOMETRICS, 2014, 12 (02) : 382 - 407
  • [30] NONLINEAR PARAMETER-ESTIMATION FOR LINKED PHARMACOKINETIC (PCK) AND PHARMACODYNAMIC (PCD) MODELS - A COMPARISON OF THE ONE-STEP AND 2-STEP APPROACH ASSUMING SPECIFIED AND MISSPECIFIED VARIANCE MODELS
    CHISUM, V
    UNADKAT, JD
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 1988, 43 (02) : 165 - 165