Decision Forest for Root Cause Analysis of Intermittent Faults

被引:16
|
作者
Singh, Satnam [1 ]
Subramania, Halasya Siva [2 ]
Holland, Steven W. [3 ]
Davis, Jason T. [4 ]
机构
[1] Gen Motors India Pvt Ltd, GM India Sci Lab, Bengaluru 560054, India
[2] Univ Alberta, Edmonton, AB T6G 2R3, Canada
[3] Gen Motors Global R&D, Vehicle Syst Res Lab, Warren, MI 48090 USA
[4] Gen Motors, Powertrain Engn Dev Ctr, Pontiac, MI 48340 USA
关键词
Automotive fault diagnosis; decision forest; decision tree; fault diagnosis and prognosis; intermittent faults; DIAGNOSIS; FUSION; TREES;
D O I
10.1109/TSMCC.2012.2227143
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Intermittent failures can be problematic in electronic control units (ECUs) such as engine/transmission control modules. When an ECU exhibits an internal performance fault, the ECU may malfunction, while the fault condition is active, and later, it may once again give correct results when conditions change. Due to highly unpredictable nature of intermittent faults, it can be extremely difficult to diagnose them. Therefore, there is a need to enhance the fault diagnosis of intermittent faults in ECUs. In this paper, we propose an off-board, data-driven approach that can assist diagnostic engineers to investigate intermittent faults using fleet-wide field failure data. The field failure data may include a large number of intermittent faults and concomitant operating parameters (e.g., vehicle speed, engine speed, control module voltage, powertrain relay voltage, etc.) recorded at the time when the faults occurred. We describe a decision forest method to identify a reduced set of informative operating parameters, i.e., features that separate or characterize the operating conditions of the intermittent fault from baseline, i.e., classes in feature selection space. A web-based application has been developed to assist the diagnostic engineers. We demonstrate the capabilities of our method using three case studies for an automobile test fleet.
引用
收藏
页码:1818 / 1827
页数:10
相关论文
共 50 条
  • [41] ROOT-CAUSE ANALYSIS AND CLEANROOM
    ADAMS, T
    IEEE SOFTWARE, 1994, 11 (04) : 4 - 4
  • [42] Root cause analysis in engineering failures
    Bhaumik, S. K.
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2010, 63 (2-3): : 297 - 299
  • [43] Root Cause Analysis of Rocking Modes
    Cardenas, William
    Klippel, Wolfgang
    JOURNAL OF THE AUDIO ENGINEERING SOCIETY, 2016, 64 (12): : 969 - 977
  • [44] MMRCA: MultiModal Root Cause Analysis
    White, Gary
    Diuwe, Jaroslaw
    Fonseca, Erika
    O'Brien, Owen
    SERVICE-ORIENTED COMPUTING, ICSOC 2021 WORKSHOPS, 2022, 13236 : 177 - 189
  • [45] A brief guide to root cause analysis
    Heher, Yael K.
    CANCER CYTOPATHOLOGY, 2017, 125 (02) : 79 - 82
  • [46] Looking for root cause: A comparative analysis
    Arnheiter, Edward D.
    Greenland, Jean E.
    TQM Journal, 2008, 20 (01): : 18 - 30
  • [47] Patient safety and root cause analysis
    Auroy, Y.
    Andreu, G.
    Aullen, J. P.
    Benhamou, D.
    Caldani, C.
    Canivet, N.
    de Lardemelle, C.
    du Roure, F. Desroys
    Francois, A.
    Gruber, M.
    Sandid, I.
    Linget, C.
    Louliere, B.
    Perrin, M.
    Rebibo, D.
    Richomme, X.
    Tinard, X.
    TRANSFUSION CLINIQUE ET BIOLOGIQUE, 2010, 17 (5-6) : 386 - 389
  • [48] The Opioid Epidemic: Root Cause Analysis
    Hartrick, Craig T.
    PAIN PRACTICE, 2016, 16 (07) : 787 - 787
  • [49] Cyclotron biocontamination: Root cause analysis
    Huiban, Mickael
    Hill, Sam
    Parmar, Jag
    Dyer, Gary
    Tyrrell, Richard
    Khan, Mohammed
    Squibb, Pauline
    Passchier, Jan
    JOURNAL OF NUCLEAR MEDICINE, 2014, 55
  • [50] Collecting data for root cause analysis
    Rooney, JJ
    Vanden Heuvel, LN
    QUALITY PROGRESS, 2003, 36 (11) : 104 - 104