Dispersive optical soliton solutions for the hyperbolic and cubic-quintic nonlinear Schrodinger equations via the extended sinh-Gordon equation expansion method

被引:111
|
作者
Seadawy, Aly R. [1 ,2 ]
Kumar, Dipankar [3 ,4 ]
Chakrabarty, Anuz Kumar [5 ]
机构
[1] Taibah Univ, Fac Sci, Math Dept, Al Madinah Al Munawarah, Saudi Arabia
[2] Beni Suef Univ, Fac Sci, Math Dept, Bani Suwayf, Egypt
[3] Univ Tsukuba, Grad Sch Syst & Informat Engn, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
[4] Bangabandhu Sheikh Mujibur Rahman Sci & Technol U, Dept Math, Gopalganj 8100, Bangladesh
[5] Daffodil Int Univ, Dept Gen Educ Dev, Dhaka, Bangladesh
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2018年 / 133卷 / 05期
关键词
KUNDU-ECKHAUS EQUATION; MODIFIED KUDRYASHOV METHOD; TRAVELING-WAVE SOLUTIONS; HIGHER-ORDER; DIFFERENTIAL-EQUATIONS; SHALLOW-WATER; DARK; BRIGHT; STABILITY; LAW;
D O I
10.1140/epjp/i2018-12027-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The (2 + 1)-dimen sional hyperbolic and cubic-quintic nonlinear Schrodinger equations describe the propagation of ultra-short pulses in optical fibers of nonlinear media. By using an extended sinh-Gordon equation expansion method, some new complex hyperbolic and trigonometric functions prototype solutions for two nonlinear Schrodinger equations were derived. The acquired new complex hyperbolic and trigonometric solutions are expressed by dark, bright, combined dark-bright, singular and combined singular solitons. The obtained results are more compatible than those of other applied methods. The extended sinh-Gordon equation expansion method is a more powerful and robust mathematical tool for generating new optical solitary wave solutions for many other nonlinear evolution equations arising in the propagation of optical pulses.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Criteria for existence and stability of soliton solutions of the cubic-quintic nonlinear Schrodinger equation
    Schürmann, HW
    Serov, VS
    PHYSICAL REVIEW E, 2000, 62 (02): : 2821 - 2826
  • [12] New Exact Solutions for High Dispersive Cubic-Quintic Nonlinear Schrodinger Equation
    Xie, Yongan
    Tang, Shengqiang
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [13] New exact solutions to the high dispersive cubic-quintic nonlinear Schrodinger equation
    Xie, Yingying
    Yang, Zhaoyu
    Li, Lingfei
    PHYSICS LETTERS A, 2018, 382 (36) : 2506 - 2514
  • [14] Solitary wave solutions for high dispersive cubic-quintic nonlinear Schrodinger equation
    Azzouzi, F.
    Triki, H.
    Mezghiche, K.
    El Akrmi, A.
    CHAOS SOLITONS & FRACTALS, 2009, 39 (03) : 1304 - 1307
  • [15] Soliton Solutions of Cubic-Quintic Nonlinear Schrodinger and Variant Boussinesq Equations by the First Integral Method
    Seadawy, Aly
    Sayed, A.
    FILOMAT, 2017, 31 (13) : 4199 - 4208
  • [16] Optical solitons for the higher order dispersive cubic-quintic nonlinear Schrodinger equation
    Dai, CQ
    Meng, JP
    Zhang, JF
    CHINESE JOURNAL OF PHYSICS, 2005, 43 (03) : 457 - 463
  • [17] Jacobi elliptic function solutions of nonlinear wave equations via the new sinh-Gordon equation expansion method
    Yan, ZY
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (07): : 1961 - 1972
  • [18] A sinh-Gordon equation expansion method to construct doubly periodic solutions for nonlinear differential equations
    Yan, ZY
    CHAOS SOLITONS & FRACTALS, 2003, 16 (02) : 291 - 297
  • [19] Exact solutions for the cubic-quintic nonlinear Schrodinger equation
    Zhu, Jia-Min
    Ma, Zheng-Yi
    CHAOS SOLITONS & FRACTALS, 2007, 33 (03) : 958 - 964
  • [20] New closed form soliton and other solutions of the Kundu-Eckhaus equation via the extended sinh-Gordon equation expansion method
    Kumar, Dipankar
    Manafian, Jalil
    Hawlader, Faisal
    Ranjbaran, Arash
    OPTIK, 2018, 160 : 159 - 167