We show that the polynomial unbiased finite impulse response (UFIR) functions derived by Shmaliy establish a new class of a one-parameter family of discrete orthogonal polynomials (DOP). The most noticeable distinction of these polynomials with respect to the classical Meixner, Charlier, Hahn, and Krawtchouk DOP is dependence on only one parameter the length of finite data. This makes them highly attractive for L-order blind fitting and analysis of informative processes. Properties of the UFIR polynomials are considered in detail along with the moments and recurrence relation. Examples of applications are given to blind approximation and phoneme pitch analysis. (C) 2013 Elsevier B.V. All rights reserved.