ADAPTIVE TRIGONOMETRIC HERMITE WAVELET FINITE ELEMENT METHOD FOR STRUCTURAL ANALYSIS

被引:9
|
作者
He, Wen-Yu [1 ]
Ren, Wei-Xin [1 ]
机构
[1] Hefei Univ Technol, Dept Civil Engn, Hefei 230009, Anhui, Peoples R China
关键词
Trigonometric wavelet; beam structure; adaptive finite element method; hierarchical method; multi-resolution; CONSTRUCTION; STRATEGY;
D O I
10.1142/S0219455413500077
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Owing to its good approximation characteristics of trigonometric functions and the multi-resolution local characteristics of wavelet, the trigonometric Hermite wavelet function is used as the element interpolation function. The corresponding trigonometric wavelet beam element is formulated based on the principle of minimum potential energy. As the order of wavelet can be enhanced easily and the multi-resolution can be achieved by the multi-scale of wavelet, the hierarchical and multi-resolution trigonometric wavelet beam element methods are proposed for the adaptive analysis. Numerical examples have demonstrated that the aforementioned two methods are effective in improving the computational accuracy. The trigonometric wavelet finite element method (WFEM) proposed herein provides an alternative approach for improving the computational accuracy, which can be tailored for the problem considered.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] A relative method for finite element nonlinear structural analysis
    Choi, J
    Bae, D
    Cho, HJ
    PROGRESS ON ADVANCED MANUFACTURE FOR MICRO/NANO TECHNOLOGY 2005, PT 1 AND 2, 2006, 505-507 : 577 - 582
  • [22] Structural Reliability Analysis UsingFuzzy Finite Element Method
    Yusmye, A. Y. N.
    Goh, B. Y.
    Ariffin, A. K.
    NOISE, VIBRATION AND COMFORT, 2014, 471 : 306 - 312
  • [23] HIERARCHICAL STOCHASTIC FINITE ELEMENT METHOD FOR STRUCTURAL ANALYSIS
    Lufeng Yang
    Yue’e Zhou
    Jingjing Zhou
    Meilan Wang
    Acta Mechanica Solida Sinica, 2013, 26 (02) : 189 - 196
  • [24] HIERARCHICAL STOCHASTIC FINITE ELEMENT METHOD FOR STRUCTURAL ANALYSIS
    Yang, Lufeng
    Zhou, Yue'e
    Zhou, Jingjing
    Wang, Meilan
    ACTA MECHANICA SOLIDA SINICA, 2013, 26 (02) : 189 - 196
  • [25] LIMITATIONS OF THE FINITE ELEMENT METHOD IN STRUCTURAL ANALYSIS.
    Hinton, E.
    Davies, J.D.
    Build International (English Edition), 1973, 6 (03): : 299 - 319
  • [26] Hierarchical Stochastic Finite Element Method for Structural Analysis
    Lufeng Yang
    Yue’e Zhou
    Jingjing Zhou
    Meilan Wang
    Acta Mechanica Solida Sinica, 2013, 26 : 189 - 196
  • [27] A wavelet-based adaptive finite element method for advection-diffusion equations
    Canuto, C
    Cravero, I
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1997, 7 (02): : 265 - 289
  • [28] THE ANALYSIS OF SHALLOW SHELLS BASED ON MULTIVARIABLE WAVELET FINITE ELEMENT METHOD
    Zhang, Xingwu
    Chen, Xuefeng
    He, Zhengjia
    Yang, Zhibo
    ACTA MECHANICA SOLIDA SINICA, 2011, 24 (05) : 450 - 460
  • [29] A wavelet-based finite element method for modal analysis of beams
    Xiang, Jiawei
    Jiang, Zhansi
    Xu, Jinyong
    MANUFACTURING SCIENCE AND ENGINEERING, PTS 1-5, 2010, 97-101 : 2728 - 2731
  • [30] THE ANALYSIS OF SHALLOW SHELLS BASED ON MULTIVARIABLE WAVELET FINITE ELEMENT METHOD
    Xingwu Zhang Xuefeng Chen1 Zhengjia He Zhibo Yang (State Key Laboratory for Manufacturing System Engineering
    Acta Mechanica Solida Sinica, 2011, 24 (05) : 450 - 460