Exponential radon transform inversion based on harmonic analysis of the Euclidean motion group

被引:0
|
作者
Yarman, CE [1 ]
Yazici, B [1 ]
机构
[1] Rensselaer Polytech Inst, Troy, NY 12181 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new method for the exponential Radon transform inversion based on harmonic analysis of the Euclidean motion group (M(2)). The exponential Radon transform is modified to be formulated as a convolution over M(2). The convolution representation leads to a block diagonalization of the modified exponential Radon transform in the Euclidean motion group Fourier domain, which provides a deconvolution type inversion for the exponential Radon transform. Numerical examples are presented to show the viability of the proposed method.
引用
收藏
页码:3377 / 3379
页数:3
相关论文
共 50 条
  • [21] Inversion of the Radon Transform on the Free Nilpotent Lie Group of Step Two
    He, Jianxun
    Xiao, Jinsen
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2014, 66 (03): : 700 - 720
  • [22] Flexible, inversion-based Matlab implementation of the Radon transform
    Schultz, Ryan
    Gu, Yu Jeffrey
    COMPUTERS & GEOSCIENCES, 2013, 52 : 437 - 442
  • [23] Inversion of the 3D exponential parallel-beam transform and the Radon transform with angle-dependent attenuation
    Kunyansky, LA
    INVERSE PROBLEMS, 2004, 20 (05) : 1455 - 1478
  • [24] Image Analysis and Reconstruction using a Wavelet Transform Constructed from a Reducible Representation of the Euclidean Motion Group
    Remco Duits
    Michael Felsberg
    Gösta Granlund
    Bart ter Haar Romeny
    International Journal of Computer Vision, 2007, 72 : 79 - 102
  • [25] Image analysis and reconstruction using a wavelet transform constructed from a reducible representation of the Euclidean motion group
    Duits, Remco
    Felsberg, Michael
    Granlund, Gosta
    Ter Haar Romeny, Bart
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2007, 72 (01) : 79 - 102
  • [26] Kernel-based methods for inversion of the Radon transform on SO(3) and their applications to texture analysis
    van den Boogaart, K. G.
    Hielscher, R.
    Prestin, J.
    Schaeben, H.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 199 (01) : 122 - 140
  • [27] Localized Radon Polar Harmonic Transform (LRPHT) Based Rotation Invariant Analysis of Textured Images
    Singh, Satya P.
    Urooj, Shabana
    INTERNATIONAL JOURNAL OF SYSTEM DYNAMICS APPLICATIONS, 2015, 4 (02) : 21 - 41
  • [28] Motion Analysis with the Radon Transform on Log-Polar Images
    V. Javier Traver
    Filiberto Pla
    Journal of Mathematical Imaging and Vision, 2008, 30 : 147 - 165
  • [29] Motion analysis with the radon transform on log-polar images
    Traver, V. Javier
    Pla, Filiberto
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2008, 30 (02) : 147 - 165
  • [30] Translational Motion Compensation of Ballistic Target Based on Radon Transform
    Xu Dan
    Feng Cun-qian
    Dong Hai-li
    Geng Zhi-yuan
    PROCEEDINGS OF 2017 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC), 2017, : 1707 - 1710