Chiral expansion and Macdonald deformation of two-dimensional Yang-Mills theory

被引:1
|
作者
Koekenyesi, Zoltan [1 ]
Sinkovics, Annamaria [1 ]
Szabo, Richard J. [2 ,3 ,4 ]
机构
[1] Eotvos Lorand Univ, Inst Theoret Phys, MTA ELTE Theoret Res Grp, Pazmany S 1-A, H-1117 Budapest, Hungary
[2] Heriot Watt Univ, Dept Math, Colin Maclaurin Bldg, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Maxwell Inst Math Sci, Edinburgh, Midlothian, Scotland
[4] Higgs Ctr Theoret Phys, Edinburgh, Midlothian, Scotland
来源
基金
欧洲研究理事会; 英国科学技术设施理事会;
关键词
REFINED CHERN-SIMONS; BRANCHED-COVERINGS; HECKE ALGEBRAS; MODULI SPACES; WILSON LOOPS; REPRESENTATIONS; STRINGS; QCD;
D O I
10.1002/prop.201600087
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive the analog of the large N Gross-Taylor holomorphic string expansion for the refinement of q-deformed U(N) Yang-Mills theory on a compact oriented Riemann surface. The derivation combines Schur-Weyl duality for quantum groups with the Etingof-Kirillov theory of generalized quantum characters which are related to Macdonald polynomials. In the unrefined limit we reproduce the chiral expansion of q-deformed Yang-Mills theory derived by de Haro, Ramgoolam and Torrielli. In the classical limit q = 1, the expansion defines a new beta-deformation of Hurwitz theory wherein the refined partition function is a generating function for certain parameterized Euler characters, which reduce in the unrefined limit beta = 1 to the orbifold Euler characteristics of Hurwitz spaces of holomorphic maps. We discuss the geometrical meaning of our expansions in relation to quantum spectral curves and beta-ensembles of matrix models arising in refined topological string theory.
引用
收藏
页码:823 / 853
页数:31
相关论文
共 50 条
  • [21] Two-dimensional super Yang-Mills theory investigated with improved resolution
    Hiller, JR
    Pinsky, S
    Salwen, N
    Trittmann, U
    PHYSICAL REVIEW D, 2005, 71 (08): : 1 - 13
  • [22] Phase structure of the generalized two-dimensional Yang-Mills theory on sphere
    Alimohammadi, M
    Tofighi, A
    EUROPEAN PHYSICAL JOURNAL C, 1999, 8 (04): : 711 - 717
  • [23] Two-dimensional Yang-Mills theory and moduli spaces of holomorphic differentials
    Griguolo, L
    Seminara, D
    Szabo, RJ
    PHYSICS LETTERS B, 2004, 600 (3-4) : 275 - 286
  • [24] On the restoration of supersymmetry in twisted two-dimensional lattice Yang-Mills theory
    Catterall, Simon
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (04):
  • [25] Phase structure of the generalized two-dimensional Yang-Mills theory on sphere
    Alimohammadi M.
    Tofighi A.
    The European Physical Journal C - Particles and Fields, 1999, 8 (4): : 711 - 717
  • [26] The Large-N Limit for Two-Dimensional Yang-Mills Theory
    Hall, Brian C.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 363 (03) : 789 - 828
  • [27] Large N Expansion of q-Deformed Two-Dimensional Yang-Mills Theory and Hecke Algebras
    Sebastian de Haro
    Sanjaye Ramgoolam
    Alessandro Torrielli
    Communications in Mathematical Physics, 2007, 273 : 317 - 355
  • [28] Large N expansion of q-deformed two-dimensional Yang-Mills theory and Hecke algebras
    de Haro, Sebastian
    Ramgoolam, Sanjaye
    Torrielli, Alessandro
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 273 (02) : 317 - 355
  • [29] Exact T(T)over-bar deformation of two-dimensional Yang-Mills theory on the sphere
    Griguolo, Luca
    Panerai, Rodolfo
    Papalini, Jacopo
    Seminara, Domenico
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, (10):
  • [30] Effects of a fundamental mass term in two-dimensional super Yang-Mills theory
    Trittmann, Uwe
    Pinsky, Stephen S.
    PHYSICAL REVIEW D, 2009, 80 (06):