Chiral expansion and Macdonald deformation of two-dimensional Yang-Mills theory

被引:1
|
作者
Koekenyesi, Zoltan [1 ]
Sinkovics, Annamaria [1 ]
Szabo, Richard J. [2 ,3 ,4 ]
机构
[1] Eotvos Lorand Univ, Inst Theoret Phys, MTA ELTE Theoret Res Grp, Pazmany S 1-A, H-1117 Budapest, Hungary
[2] Heriot Watt Univ, Dept Math, Colin Maclaurin Bldg, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Maxwell Inst Math Sci, Edinburgh, Midlothian, Scotland
[4] Higgs Ctr Theoret Phys, Edinburgh, Midlothian, Scotland
来源
基金
英国科学技术设施理事会; 欧洲研究理事会;
关键词
REFINED CHERN-SIMONS; BRANCHED-COVERINGS; HECKE ALGEBRAS; MODULI SPACES; WILSON LOOPS; REPRESENTATIONS; STRINGS; QCD;
D O I
10.1002/prop.201600087
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive the analog of the large N Gross-Taylor holomorphic string expansion for the refinement of q-deformed U(N) Yang-Mills theory on a compact oriented Riemann surface. The derivation combines Schur-Weyl duality for quantum groups with the Etingof-Kirillov theory of generalized quantum characters which are related to Macdonald polynomials. In the unrefined limit we reproduce the chiral expansion of q-deformed Yang-Mills theory derived by de Haro, Ramgoolam and Torrielli. In the classical limit q = 1, the expansion defines a new beta-deformation of Hurwitz theory wherein the refined partition function is a generating function for certain parameterized Euler characters, which reduce in the unrefined limit beta = 1 to the orbifold Euler characteristics of Hurwitz spaces of holomorphic maps. We discuss the geometrical meaning of our expansions in relation to quantum spectral curves and beta-ensembles of matrix models arising in refined topological string theory.
引用
收藏
页码:823 / 853
页数:31
相关论文
共 50 条
  • [1] Entanglement entropy and the large N expansion of two-dimensional Yang-Mills theory
    Donnelly, William
    Timmerman, Sydney
    Valdes-Meller, Nicolas
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (04)
  • [2] Entanglement entropy and the large N expansion of two-dimensional Yang-Mills theory
    William Donnelly
    Sydney Timmerman
    Nicolás Valdés-Meller
    [J]. Journal of High Energy Physics, 2020
  • [3] Two-dimensional Yang-Mills theory in the leading 1/N expansion revisited
    Bassetto, A
    Nardelli, G
    Shuvaev, A
    [J]. NUCLEAR PHYSICS B, 1997, 495 (1-2) : 451 - 460
  • [4] Matrix strings in two-dimensional Yang-Mills theory
    Kogan, II
    Szabo, RJ
    [J]. PHYSICS LETTERS B, 1997, 404 (3-4) : 276 - 284
  • [5] Hyperbolic Lattices and Two-Dimensional Yang-Mills Theory
    Shankar, G.
    Maciejko, Joseph
    [J]. Physical Review Letters, 2024, 133 (14)
  • [6] Two-dimensional quantum Yang-Mills theory with corners
    Oeckl, Robert
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (13)
  • [7] Vector supersymmetry of two-dimensional Yang-Mills theory
    Boldo, JL
    Sasaki, CAG
    Sorella, SP
    Vilar, LCQ
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (13): : 2743 - 2751
  • [8] Multiple vacua in two-dimensional Yang-Mills theory
    Vian, F
    Bassetto, A
    Griguolo, L
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2000, 90 : 61 - 63
  • [9] Matrix strings in two-dimensional Yang-Mills theory
    [J]. Phys Lett Sect B Nucl Elem Part High Energy Phys, 3-4 (276):
  • [10] Equation of state of two-dimensional Yang-Mills theory
    Karthik, Nikhil
    Narayanan, Rajamani
    [J]. PHYSICAL REVIEW D, 2014, 90 (12):