The essential norm of a composition operator on a planar domain

被引:5
|
作者
Fisher, SD [1 ]
Shapiro, JE [1 ]
机构
[1] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
关键词
D O I
10.1215/ijm/1255985340
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We generalize to finitely connected planar domains the result of Joel Shapiro which gives a formula for the essential norm of a composition operator. In the process, we define and give some properties of a generalization of the Nevanlinna counting function and prove generalizations of the Littlewood inequality, the Littlewood-Paley identity, and change of variable formulas, as well.
引用
收藏
页码:113 / 130
页数:18
相关论文
共 50 条
  • [31] ESSENTIAL NORM OF WEIGHTED COMPOSITION OPERATOR FROM HARDY SPACE TO WEIGHTED BERGMAN SPACE ON THE UNIT BALL
    Wang, Chang-Jin
    Liang, Yu-Xia
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 19 (06) : 959 - 965
  • [32] An Estimate of the Essential Norm of a Composition Operator from F(p, q, s) to Bα in the Unit Ball
    Zeng, Hong-Gang
    Zhou, Ze-Hua
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2010,
  • [33] The Essential Norm of a Generalized Composition Operator Between Bloch-Type Spaces and QK Type Spaces
    Yanyan Yu
    Yongmin Liu
    Complex Analysis and Operator Theory, 2012, 6 : 1231 - 1240
  • [34] ESSENTIAL COMMUTATIVITY AND ISOMETRY OF COMPOSITION OPERATOR AND DIFFERENTIATION OPERATOR
    Li, Geng-Lei
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2016, 21 (04) : 696 - 703
  • [35] Essential norm of the difference of weighted composition operators
    Lindstrom, Mikael
    Woff, Elke
    MONATSHEFTE FUR MATHEMATIK, 2008, 153 (02): : 133 - 143
  • [36] Essential norm of the difference of weighted composition operators
    Mikael Lindström
    Elke Wolf
    Monatshefte für Mathematik, 2008, 153 : 133 - 143
  • [37] Essential norm estimates for composition operators on BMOA
    Galindo, Pablo
    Laitila, Jussi
    Lindstrom, Mikael
    JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (04) : 629 - 643
  • [38] The Composition Operator on Mixed-Norm Lebesgue Spaces
    N. A. Evseev
    A. V. Menovshchikov
    Mathematical Notes, 2019, 105 : 812 - 817
  • [39] The Composition Operator on Mixed-Norm Lebesgue Spaces
    Evseev, N. A.
    Menovshchikov, A. V.
    MATHEMATICAL NOTES, 2019, 105 (5-6) : 812 - 817
  • [40] The Friedrichs operator of a planar domain. II
    Putinar, M
    Shapiro, HS
    RECENT ADVANCES IN OPERATOR THEORY AND RELATED TOPICS: THE BELA SZOKEFALVI-NAGY MEMORIAL VOLUME, 2001, 127 : 519 - 551