Genome-wide identification of bZIP transcription factors and their responses to abiotic stress in celery

被引:9
|
作者
Yang, Qing-Qing
Feng, Kai
Xu, Zhi-Sheng
Duan, Ao-Qi
Liu, Jie-Xia
Xiong, Ai-Sheng
机构
[1] Nanjing Agr Univ, State Key Lab Crop Genet & Germplasm Enhancement, Minist Agr, Coll Hort, Nanjing, Jiangsu, Peoples R China
[2] Nanjing Agr Univ, Rural Affairs Key Lab Biol & Germplasm Enhancemen, Coll Hort, Nanjing, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
abiotic stress; bZIP; celery; expression profiles; evolution; transcription factors; LEUCINE ZIPPER; GENE FAMILY; DNA; ROLES; EXPRESSION; PROLINE; DOMAIN;
D O I
10.1080/13102818.2019.1611386
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Celery (Apium graveolens L.) is one of the most important vegetables in the Apiaceae family, rich in nutrients and widely grown around the world. bZIP transcription factors family plays an important role in the transcription regulation of plant growth and development, as well as adaptation to the external environment. In this paper, 62 bZIP family transcription factors were screened and identified based on the whole genome sequence of celery. The bZIP proteins of celery and Arabidopsis thaliana were divided into 10 subfamilies according to the phylogenetic tree. Phylogenetic and evolutionary analysis showed that the number of bZIP family members gradually expanded from lower plants to higher plants during the long evolution process. Based on the homology of celery and A. thaliana bZIP genes, the interaction network between celery bZIP transcription factors and other proteins in the genome was constructed, and the correlation data of protein interaction were also obtained. The expression profiles of 12 selected AgbZIP genes were detected and analyzed under abiotic stress treatments and different tissues using RT-qPCR. The results showed that AgbZIP can respond to high temperature, low temperature, drought, and high salt stress.
引用
收藏
页码:707 / 718
页数:12
相关论文
共 50 条
  • [31] Genome-wide analysis of the abiotic stress-related bZIP family in switchgrass
    Weiwei Wang
    Yongfeng Wang
    Shumeng Zhang
    Kunliang Xie
    Chao Zhang
    Yajun Xi
    Fengli Sun
    Molecular Biology Reports, 2020, 47 : 4439 - 4454
  • [32] Genome-wide analysis of the abiotic stress-related bZIP family in switchgrass
    Wang, Weiwei
    Wang, Yongfeng
    Zhang, Shumeng
    Xie, Kunliang
    Zhang, Chao
    Xi, Yajun
    Sun, Fengli
    MOLECULAR BIOLOGY REPORTS, 2020, 47 (06) : 4439 - 4454
  • [33] Genome-Wide Identification and Characterization of WRKY Transcription Factors in Betula platyphylla Suk. and Their Responses to Abiotic Stresses
    Yu, Jiajie
    Zhang, Xiang
    Cao, Jiayu
    Bai, Heming
    Wang, Ruiqi
    Wang, Chao
    Xu, Zhiru
    Li, Chunming
    Liu, Guanjun
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (19)
  • [34] Genome-Wide Identification of bZIP Transcription Factors in Cymbidium ensifolium and Analysis of Their Expression under Low-Temperature Stress
    Lai, Huiping
    Wang, Mengyao
    Yan, Lu
    Feng, Caiyun
    Tian, Yang
    Tian, Xinyue
    Peng, Donghui
    Lan, Siren
    Zhang, Yanping
    Ai, Ye
    PLANTS-BASEL, 2024, 13 (02):
  • [35] Genome-wide profiling of bZIP transcription factors in Camelina sativa: implications for development and stress response
    Rahman, Shahroz
    Ikram, Abdul Rehman
    AlHusnain, Latifa
    Fiaz, Sajid
    Rafique, Muhammad Umar
    Ali, Muhammad Amjad
    AlKahtani, Muneera D. F.
    Attia, Kotb A.
    Azeem, Farrukh
    BMC GENOMIC DATA, 2024, 25 (01):
  • [36] Genome-wide exploration of bZIP transcription factors and their contribution to alkali stress response in Helianthus annuus
    Rahman, Shahroz
    Rehman, Abdul
    Waqas, Muhammad
    Mubarik, Muhammad Salman
    Alwutayd, Khairiah
    Abdelgawad, Hamada
    Jalal, Arshad
    Azeem, Farrukh
    Rizwan, Muhammad
    PLANT STRESS, 2023, 10
  • [37] The bZIP transcription factors in Liriodendron chinense: Genome-wide recognition, characteristics and cold stress response
    Li, Mingyue
    Hwarari, Delight
    Li, Yang
    Ahmad, Baseer
    Min, Tian
    Zhang, Wenting
    Wang, Jinyan
    Yang, Liming
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [38] Genome-Wide Identification and Expression Analysis of Heat Shock Transcription Factors in Camellia sinensis Under Abiotic Stress
    Li, Guimin
    Shi, Xinying
    Lin, Qinmin
    Lv, Mengmeng
    Chen, Jing
    Wen, Yingxin
    Feng, Zhiyi
    Azam, Syed Muhammad
    Cheng, Yan
    Wang, Shucai
    Cao, Shijiang
    PLANTS-BASEL, 2025, 14 (05):
  • [39] Genome-Wide Identification and Expression Profiles of Nuclear Factor Y A Transcription Factors in Blueberry Under Abiotic Stress
    Xu, Xiuyue
    Su, Hong
    Sun, Shuwei
    Sun, Jing
    Zhang, Xiang
    Yu, Jiajie
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (23)
  • [40] Comprehensive Genome-Wide Identification and Expression Profiling of bHLH Transcription Factors in Areca catechu Under Abiotic Stress
    Ali, Akhtar
    Khan, Noor Muhammad
    Jiang, Yiqi
    Zhou, Guangzhen
    Wan, Yinglang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (23)