Fluorescence quantum yield of carbon dioxide for quantitative UV laser-induced fluorescence in high-pressure flames

被引:8
|
作者
Lee, T. [1 ]
Bessler, W. G. [2 ]
Yoo, J. [1 ]
Schulz, C. [3 ]
Jeffries, J. B. [1 ]
Hanson, R. K. [1 ]
机构
[1] Stanford Univ, Dept Mech Engn, High Temp Gasdynam Lab, Stanford, CA 94305 USA
[2] German Aerosp Ctr, Inst Tech Thermodynam, D-70569 Stuttgart, Germany
[3] Univ Duisburg Essen, IVG, D-47057 Duisburg, Germany
来源
APPLIED PHYSICS B-LASERS AND OPTICS | 2008年 / 93卷 / 2-3期
关键词
D O I
10.1007/s00340-008-3161-9
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The fluorescence quantum yield for ultraviolet laser-induced fluorescence of CO2 is determined for selected excitation wavelengths in the range 215-250 nm. Wavelength-resolved laser-induced fluorescence (LIF) spectra of CO2, NO, and O-2 are measured in the burned gases of a laminar CH4/air flame (phi=0.9 and 1.1) at 20 bar with additional NO seeded into the flow. The fluorescence spectra are fit to determine the relative contribution of the three species to infer an estimate of fluorescence quantum yield for CO2 that ranges from 2-8x10-6 depending on temperature and excitation wavelength with an estimated uncertainty of +/- 0.5x106. The CO2 fluorescence signal increases linearly with gas pressure for flames with constant CO2 mole fraction for the 10 to 60 bar range, indicating that collisional quenching is not an important contributor to the CO2 fluorescence quantum yield. Spectral simulation calculations are used to choose two wavelengths for excitation of CO2, 239.34 and 242.14 nm, which minimize interference from LIF of NO and O-2. Quantitative LIF images of CO2 are demonstrated using these two excitation wavelengths and the measured fluorescence quantum yield.
引用
收藏
页码:677 / 685
页数:9
相关论文
共 50 条
  • [21] Laser-induced fluorescence of NCN in low and atmospheric pressure flames
    Klein-Douwel, R. J. H.
    Dam, N. J.
    ter Meulen, J. J.
    OPTICS LETTERS, 2008, 33 (22) : 2620 - 2622
  • [22] Quantitative laser-induced fluorescence measurements and modeling of nitric oxide in high-pressure (6-15 atm) counterflow diffusion flames
    Ravikrishna, RV
    Naik, SV
    Cooper, CS
    Laurendeau, NM
    COMBUSTION SCIENCE AND TECHNOLOGY, 2004, 176 (01) : 1 - 21
  • [23] DIAGNOSTICS OF HIGH-PRESSURE ARC PLASMAS FROM LASER-INDUCED FLUORESCENCE
    VANDENHOEK, WJ
    VISSER, JA
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1981, 14 (09) : 1613 - 1627
  • [24] SATURATED LASER-INDUCED FLUORESCENCE IN A HIGH-PRESSURE METAL HALIDE DISCHARGE
    KRAMER, J
    JOURNAL OF APPLIED PHYSICS, 1990, 67 (05) : 2289 - 2297
  • [25] Synchronized 100-kHz Planar Laser-Induced Fluorescence and Schlieren Imaging of High-Pressure Spray Flames
    Park, Jiho
    Sim, Hyung Sub
    Hwang, Joonsik
    Manin, Julien
    AIAA SCITECH 2024 FORUM, 2024,
  • [26] Planar laser-induced fluorescence of OH in high-pressure cryogenic LOx/GH2 jet flames
    Singla, G
    Scouflaire, P
    Rolon, C
    Candel, S
    COMBUSTION AND FLAME, 2006, 144 (1-2) : 151 - 169
  • [27] Strategies for Quantitative Planar Laser-Induced Fluorescence of NH Radicals in Flames
    Brackmann, C.
    Zhou, B.
    Li, Z. S.
    Alden, M.
    COMBUSTION SCIENCE AND TECHNOLOGY, 2016, 188 (4-5) : 529 - 541
  • [28] Quantitative picosecond laser-induced fluorescence measurements of nitric oxide in flames
    Brackmann, Christian
    Bood, Joakim
    Naucler, Jenny D.
    Konnov, Alexander A.
    Alden, Marcus
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2017, 36 (03) : 4533 - 4540
  • [29] LASER-INDUCED FLUORESCENCE DETERMINATION OF TEMPERATURES IN LOW-PRESSURE FLAMES
    RENSBERGER, KJ
    JEFFRIES, JB
    COPELAND, RA
    KOHSEHOINGHAUS, K
    WISE, ML
    CROSLEY, DR
    APPLIED OPTICS, 1989, 28 (17): : 3556 - 3566
  • [30] LASER-INDUCED FLUORESCENCE MEASUREMENT OF SODIUM IN FLAMES
    DAILY, JW
    CHAN, C
    COMBUSTION AND FLAME, 1978, 33 (01) : 47 - 53