A Liouville type theorem for a class of anisotropic equations

被引:1
|
作者
Barbu, L. [1 ]
Enache, C. [2 ]
机构
[1] Ovidius Univ Constanta, Dept Math, Bdul Mamaia 124, Constanta 900527, Romania
[2] Romanian Acad, Simion Stoilow Inst Math, Bucharest 010702, Romania
来源
Analele Stiintifice ale Universitatii Ovidius Constanta-Seria Matematica | 2016年 / 24卷 / 03期
关键词
ELLIPTIC PROBLEMS;
D O I
10.1515/auom-2016-0047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
anisotropic equations. Under some appropriate conditions on the data, we show that the corresponding equations cannot have non-trivial positive solutions bounded from above.
引用
收藏
页码:47 / 59
页数:13
相关论文
共 50 条
  • [31] On Liouville Type Theorem for Stationary Non-Newtonian Fluid Equations
    Dongho Chae
    Jörg Wolf
    Journal of Nonlinear Science, 2020, 30 : 1503 - 1517
  • [32] A Liouville type theorem for some conformally invariant fully nonlinear equations
    Li, AB
    Li, YY
    GEOMETRIC ANALYSIS OF PDE AND SEVERAL COMPLEX VARIABLES: DEDICATED TO FRANCOIS TREVES, 2005, 368 : 321 - 328
  • [33] A Liouville's theorem for some Monge-Ampere type equations
    Fang, Hao
    Ma, Biao
    Wei, Wei
    JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 285 (04)
  • [34] UNIFORM LOWER BOUND AND LIOUVILLE TYPE THEOREM FOR FRACTIONAL LICHNEROWICZ EQUATIONS
    Duong, Anh Tuan
    Nguyen, Van Hoang
    Nguyen, Thi Quynh
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 104 (03) : 484 - 492
  • [35] Liouville-type theorem for Kirchhoff equations involving Grushin operators
    Wei, Yunfeng
    Chen, Caisheng
    Yang, Hongwei
    BOUNDARY VALUE PROBLEMS, 2020, 2020 (01)
  • [36] A Liouville-type theorem for the 3D primitive equations
    Peralta-Salas, D.
    Slobodeanu, R.
    PHYSICA D-NONLINEAR PHENOMENA, 2023, 453
  • [37] On Liouville Type Theorem for Stationary Non-Newtonian Fluid Equations
    Chae, Dongho
    Wolf, Joerg
    JOURNAL OF NONLINEAR SCIENCE, 2020, 30 (04) : 1503 - 1517
  • [38] Liouville type theorem for higher order Henon equations on a half space
    Dai, Wei
    Qin, Guolin
    Zhang, Yang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 183 : 284 - 302
  • [39] The Liouville Type Theorem for a System of Nonlinear Integral Equations on Exterior Domain
    Yin Rong
    Zhang Jihui
    Shang Xudong
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2019, 32 (03): : 191 - 206
  • [40] A Liouville type theorem for the stationary compressible Navier-Stokes equations
    Liu, Pan
    ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (05)