F+ Implants in Crystalline Si: The Si Interstitial Contribution

被引:0
|
作者
Lopez, Pedro [1 ]
Pelaz, Lourdes [1 ]
Duffy, Ray [2 ]
Meunier-Beillard, P. [2 ]
Roozeboom, F. [3 ]
van der Tak, K. [4 ]
Breimer, P. [4 ]
van Berkum, J. G. M. [4 ]
Verheijen, M. A. [4 ]
Kaiser, M. [4 ]
机构
[1] Univ Valladolid, ETSI Telecommun, Elect & Elect, Campus Miguel Delibes S-N, E-47011 Valladolid, Spain
[2] NXP Semicond, B-3001 Heverlee, Belgium
[3] NXP Semicond, NL-5656 Eindhoven, Netherlands
[4] Philips Res Lab Eindhoven, NL-5656 Eindhoven, Netherlands
来源
DOPING ENGINEERING FOR FRONT-END PROCESSING | 2008年 / 1070卷
关键词
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work the Si interstitial contribution of F+ implants in crystalline Si is quantified by the analysis of extended defects and B diffusion in samples implanted with 25 keV F+ and/or 40 keV Si+. We estimate that approximately 0.4 to 0.5 Si interstitials are generated per implanted F+ ion, which is in good agreement with the value resulting from the net separation of Frenkel pairs obtained from MARLOWE simulations. The damage created by F+ implants in crystalline Si may explain the presence of extended defects in F-enriched samples and the evolution of B profiles during annealing. For short anneals, B diffusion is reduced when F+ is co-implanted with Si+ compared to the sample only implanted with Si+, due to the formation of more stable defects that set a lower Si interstitial supersaturation. For longer anneals, when defects have dissolved and TED is complete, B diffusion is higher because the additional damage created by the F+ implant has contributed to enhance B diffusion.
引用
收藏
页码:279 / +
页数:2
相关论文
共 50 条
  • [21] Formation energy of interstitial Si in Au-doped Si
    Suezawa, M
    DEFECT AND IMPURITY ENGINEERED SEMICONDUCTORS II, 1998, 510 : 15 - 20
  • [22] Formation energy of interstitial Si in Au-doped Si determined by optical absorption measurements of H bound to interstitial Si
    Suezawa, M
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 1998, 37 (3A): : L259 - L261
  • [23] Monolithic Si nanocrystal/crystalline Si tandem cells involving Si nanocrystals in SiC
    Schnabel, Manuel
    Canino, Mariaconcetta
    Schillinger, Kai
    Loeper, Philipp
    Summonte, Caterina
    Wilshaw, Peter R.
    Janz, Stefan
    PROGRESS IN PHOTOVOLTAICS, 2016, 24 (09): : 1165 - 1177
  • [24] MEASUREMENT OF THE INTERFACIAL ENERGY BETWEEN AMORPHOUS SI AND CRYSTALLINE SI
    TU, KN
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1991, 53 (01): : 32 - 34
  • [25] DEFECT FORMATION IN IMPLANTATION OF CRYSTALLINE SI BY MEV SI IONS
    MAKINEN, J
    PUNKKA, E
    VEHANEN, A
    HAUTOJARVI, P
    KEINONEN, J
    HAUTALA, M
    RAUHALA, E
    JOURNAL OF APPLIED PHYSICS, 1990, 67 (02) : 990 - 995
  • [26] HIGH PHOTOVOLTAGES IN AMORPHOUS SI-CRYSTALLINE SI JUNCTIONS
    BUSMUNDRUD, O
    JAYADEVAIAH, TS
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 1972, 11 (01): : K47 - +
  • [27] Investigation on high mobility nanocrystalline Si with crystalline Si heterostructure
    Wei, Wensheng
    Wang, Tianmin
    He, Yuliang
    SUPERLATTICES AND MICROSTRUCTURES, 2007, 41 (04) : 216 - 226
  • [28] Measurement of the interfacial energy between amorphous Si and crystalline Si
    Tu, K.N.
    Applied Physics A: Solids and Surfaces, 1991, 53 (01): : 32 - 34
  • [29] The status of crystalline Si modules
    Margadonna, D
    Ferrazza, F
    RENEWABLE ENERGY, 1998, 15 (1-4) : 83 - 88