Regularized Multivariate Analysis Framework for Interpretable High-Dimensional Variable Selection

被引:9
|
作者
Munoz-Romero, Sergio [1 ]
Gomez-Verdejo, Vanessa [2 ]
Arenas-Garcia, Jernimo [2 ]
机构
[1] Univ Rey Juan Carlos, Dept Signal Proc & Commun, Madrid, Spain
[2] Univ Carlos III Madrid, Dept Signal Proc & Commun, E-28903 Getafe, Spain
关键词
SPARSE; REGRESSION;
D O I
10.1109/MCI.2016.2601701
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multivariate Analysis (MVA) comprises a family of well-known methods for feature extraction which exploit correlations among input variables representing the data. One important property that is enjoyed by most such methods is uncorrelation among the extracted features. Recently, regularized versions of MVA methods have appeared in the literature, mainly with the goal to gain interpretability of the solution. In these cases, the solutions can no longer be obtained in a closed manner, and more complex optimization methods that rely on the iteration of two steps are frequently used. This paper recurs to an alternative approach to solve efficiently this iterative problem. The main novelty of this approach lies in preserving several properties of the original methods, most notably the uncorrelation of the extracted features. Under this framework, we propose a novel method that takes advantage of the,2,1 norm to perform variable selection during the feature extraction process. Experimental results over different problems corroborate the advantages of the proposed formulation in comparison to state of the art formulations.
引用
收藏
页码:24 / 35
页数:12
相关论文
共 50 条
  • [21] A high-dimensional M-estimator framework for bi-level variable selection
    Luo, Bin
    Gao, Xiaoli
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2022, 74 (03) : 559 - 579
  • [22] A high-dimensional M-estimator framework for bi-level variable selection
    Bin Luo
    Xiaoli Gao
    Annals of the Institute of Statistical Mathematics, 2022, 74 : 559 - 579
  • [23] Variable screening in multivariate linear regression with high-dimensional covariates
    Bizuayehu, Shiferaw B.
    Li, Lu
    Xu, Jin
    STATISTICAL THEORY AND RELATED FIELDS, 2022, 6 (03) : 241 - 253
  • [24] Robust regularized cluster analysis for high-dimensional data
    Kalina, Jan
    Vlckova, Katarina
    MATHEMATICAL METHODS IN ECONOMICS (MME 2014), 2014, : 378 - 383
  • [25] Improving Variable Selection for High-Dimensional Propensity Scores
    Wyss, Richard
    Schneeweiss, Sebastian
    Eddings, Wesley
    van der Laan, Mark J.
    Franklin, Jessica M.
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2016, 25 : 146 - 147
  • [26] Bayesian variable selection in clustering high-dimensional data
    Tadesse, MG
    Sha, N
    Vannucci, M
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (470) : 602 - 617
  • [27] SPARSE COVARIANCE THRESHOLDING FOR HIGH-DIMENSIONAL VARIABLE SELECTION
    Jeng, X. Jessie
    Daye, Z. John
    STATISTICA SINICA, 2011, 21 (02) : 625 - 657
  • [28] VARIABLE SELECTION AND PREDICTION WITH INCOMPLETE HIGH-DIMENSIONAL DATA
    Liu, Ying
    Wang, Yuanjia
    Feng, Yang
    Wall, Melanie M.
    ANNALS OF APPLIED STATISTICS, 2016, 10 (01): : 418 - 450
  • [29] Bayesian variable selection for high-dimensional rank data
    Cui, Can
    Singh, Susheela P.
    Staicu, Ana-Maria
    Reich, Brian J.
    ENVIRONMETRICS, 2021, 32 (07)
  • [30] A stepwise regression algorithm for high-dimensional variable selection
    Hwang, Jing-Shiang
    Hu, Tsuey-Hwa
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (09) : 1793 - 1806