State of Charge Estimation for Lithium-Ion Power Battery Based on H-Infinity Filter Algorithm

被引:29
|
作者
Li, Lan [1 ]
Hu, Minghui [1 ]
Xu, Yidan [1 ]
Fu, Chunyun [1 ]
Jin, Guoqing [2 ]
Li, Zonghua [2 ]
机构
[1] Chongqing Univ, Sch Automot Engn, State Key Lab Mech Transmiss, Chongqing 400044, Peoples R China
[2] Chongqing Changan Automobile Co Ltd, Chongqing 400023, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 18期
基金
国家重点研发计划;
关键词
lithium-ion power batteries; fractional-order model; state of charge estimate; H-infinity filter; hybrid particle swarm optimization algorithm; EXTENDED KALMAN FILTER; OF-CHARGE; MANAGEMENT-SYSTEMS; OBSERVER DESIGN; HEALTH; PACKS;
D O I
10.3390/app10186371
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
To accurately estimate the state of charge (SOC) of lithium-ion power batteries in the event of errors in the battery model or unknown external noise, an SOC estimation method based on the H-infinity filter (HIF) algorithm is proposed in this paper. Firstly, a fractional-order battery model based on a dual polarization equivalent circuit model is established. Then, the parameters of the fractional-order battery model are identified by the hybrid particle swarm optimization (HPSO) algorithm, based on a genetic crossover factor. Finally, the accuracy of the SOC estimation results of the lithium-ion batteries, using the HIF algorithm and extended Kalman filter (EKF) algorithm, are verified and compared under three conditions: uncertain measurement accuracy, uncertain SOC initial value, and uncertain application conditions. The simulation results show that the SOC estimation method based on HIF can ensure that the SOC estimation error value fluctuates within +/- 0.02 in any case, and is slightly affected by environmental and other factors. It provides a way to improve the accuracy of SOC estimation in a battery management system.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Lithium-Ion battery State of Charge estimation with a Kalman Filter based on a electrochemical model
    Di Domenico, Domenico
    Fiengo, Giovanni
    Stefanopoulou, Anna
    2008 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, VOLS 1 AND 2, 2008, : 425 - +
  • [32] A hierarchical adaptive extended Kalman filter algorithm for lithium-ion battery state of charge estimation
    Wang, Dongqing
    Yang, Yan
    Gu, Tianyu
    JOURNAL OF ENERGY STORAGE, 2023, 62
  • [33] State of charge estimation of vehicle lithium-ion battery based on unscented Kalman filter
    Chen, Junlin
    Wang, Chun
    Pu, Long
    39TH YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION, YAC 2024, 2024, : 1934 - 1938
  • [34] State-of-Charge Estimation of Lithium-ion Battery Based on an Improved Kalman Filter
    Fang, Hao
    Zhang, Yue
    Liu, Min
    Shen, Weiming
    2017 IEEE 21ST INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN (CSCWD), 2017, : 515 - 520
  • [35] The State of Charge Estimation of Lithium-Ion Battery Based on Battery Capacity
    Li, Junhong
    Jiang, Zeyu
    Jiang, Yizhe
    Song, Weicheng
    Gu, Juping
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (12)
  • [36] Estimation of Lithium-ion Battery State of Charge
    Zhang Di
    Ma Yan
    Bai Qing-Wen
    2011 30TH CHINESE CONTROL CONFERENCE (CCC), 2011, : 6256 - 6260
  • [37] State of Charge Estimation of Power Lithium-ion Battery Based on a Variable Forgetting Factor Adaptive Kalman Filter
    Wu, Muyao
    Qin, Linlin
    Wu, Gang
    Huang, Yusha
    Shi, Chun
    JOURNAL OF ENERGY STORAGE, 2021, 41
  • [38] State of charge estimation of Power lithium-ion battery based on an Affine Iterative Adaptive Extended Kalman Filter
    Wu, Muyao
    Qin, Linlin
    Wu, Gang
    JOURNAL OF ENERGY STORAGE, 2022, 51
  • [39] State of charge estimation of lithium-ion battery based on improved adaptive boosting algorithm
    Zhao, Xiaobo
    Jung, Seunghun
    Wang, Biao
    Xuan, Dongji
    JOURNAL OF ENERGY STORAGE, 2023, 71
  • [40] State of Charge Estimation of Lithium-ion Batteries with Particle Filter Algorithm
    Xia, Fei
    Wang, Zhicheng
    Zhang, Chuanlin
    IECON 2020: THE 46TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2020, : 3628 - 3634