Scale-space feature extraction on digital surfaces

被引:4
|
作者
Levallois, Jeremy [1 ,2 ]
Coeurjolly, David [1 ]
Lachaud, Jacques-Olivier [2 ,3 ]
机构
[1] Univ Lyon, CNRS UMR 5205, INSA Lyon, LIRIS, F-69621 Villeurbanne, France
[2] Univ Savoie, CNRS, UMR 5127, LAMA, F-73776 Chambery, France
[3] Univ Grenoble Alpes, CNRS, UMR 5224, LJK, F-38041 Grenoble, France
来源
COMPUTERS & GRAPHICS-UK | 2015年 / 51卷
关键词
Feature extraction; Digital geometry; Scale-space; Curvature estimation; Multigrid convergence; Integral invariants; CLASSIFICATION; DIFFUSION; GEOMETRY;
D O I
10.1016/j.cag.2015.05.023
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A classical problem in many computer graphics applications consists in extracting significant zones or points on an object surface, like loci of tangent discontinuity (edges), maxima or minima of curvatures, inflection points, etc. These places have specific local geometrical properties and often called generically features. An important problem is related to the scale, or range of scales, for which a feature is relevant. We propose a new robust method to detect features on digital data (surface of objects in Z(3), which exploits asymptotic properties of recent digital curvature estimators. In Coeurjolly et al [1] and Levallois et al. [1,2], authors have proposed curvature estimators (mean, principal and Gaussian) on 2D and 3D digitized shapes and have demonstrated their multigrid convergence (for C-3-smooth surfaces). Since such approaches integrate local information within a ball around points of interest the radius is a crucial parameter. In this paper, we consider the radius as a scale-space parameter. By analyzing the behavior of such curvature estimators as the ball radius tends to zero, we propose a tool to efficiently characterize and extract several relevant features (edges, smooth and flat parts) on digital surfaces. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:177 / 189
页数:13
相关论文
共 50 条
  • [21] A biologically inspired scale-space for illumination invariant feature detection
    Vonikakis, Vasillios
    Chrysostomou, Dimitrios
    Kouskouridas, Rigas
    Gasteratos, Antonios
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2013, 24 (07)
  • [22] Defocus Blur-Invariant Scale-Space Feature Extractions
    Saad, Elhusain
    Hirakawa, Keigo
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (07) : 3141 - 3156
  • [23] Feature detection utilising shape modelling and reasoning in scale-space
    Aziz, A.Z.
    Curtis, K.M.
    Proceedings of the IASTED International Symposium on Applied Informatics, 1991,
  • [24] B-spline scale-space of spline curves and surfaces
    Kee, C. Y.
    Lee, S. L.
    COMPUTER-AIDED DESIGN, 2012, 44 (04) : 275 - 288
  • [25] From Gaussian scale-space to B-spline scale-space
    Wang, YP
    Lee, SL
    ICASSP '99: 1999 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS VOLS I-VI, 1999, : 3441 - 3444
  • [26] On shape recovery from scale-space moments on untextured surfaces
    Zekri, E
    SCIA '97 - PROCEEDINGS OF THE 10TH SCANDINAVIAN CONFERENCE ON IMAGE ANALYSIS, VOLS 1 AND 2, 1997, : 87 - 94
  • [27] Linear scale-space
    Florack, L.M.J.
    Romeny, Haar
    Koenderink, J.J.
    Viergever, M.A.
    Journal of Mathematical Imaging and Vision, 1994, 4 (04) : 325 - 351
  • [28] Nonlinear scale-space
    INRIA, Antipolis, France
    Image Vision Comput, 4 (279-294):
  • [29] On the Gaussian scale-space
    Iijima, T
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2003, E86D (07) : 1162 - 1164
  • [30] THE DETECTION OF DOMINANT POINTS ON DIGITAL CURVES BY SCALE-SPACE FILTERING
    PEI, SC
    LIN, CN
    PATTERN RECOGNITION, 1992, 25 (11) : 1307 - 1314