Scale-space feature extraction on digital surfaces

被引:4
|
作者
Levallois, Jeremy [1 ,2 ]
Coeurjolly, David [1 ]
Lachaud, Jacques-Olivier [2 ,3 ]
机构
[1] Univ Lyon, CNRS UMR 5205, INSA Lyon, LIRIS, F-69621 Villeurbanne, France
[2] Univ Savoie, CNRS, UMR 5127, LAMA, F-73776 Chambery, France
[3] Univ Grenoble Alpes, CNRS, UMR 5224, LJK, F-38041 Grenoble, France
来源
COMPUTERS & GRAPHICS-UK | 2015年 / 51卷
关键词
Feature extraction; Digital geometry; Scale-space; Curvature estimation; Multigrid convergence; Integral invariants; CLASSIFICATION; DIFFUSION; GEOMETRY;
D O I
10.1016/j.cag.2015.05.023
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A classical problem in many computer graphics applications consists in extracting significant zones or points on an object surface, like loci of tangent discontinuity (edges), maxima or minima of curvatures, inflection points, etc. These places have specific local geometrical properties and often called generically features. An important problem is related to the scale, or range of scales, for which a feature is relevant. We propose a new robust method to detect features on digital data (surface of objects in Z(3), which exploits asymptotic properties of recent digital curvature estimators. In Coeurjolly et al [1] and Levallois et al. [1,2], authors have proposed curvature estimators (mean, principal and Gaussian) on 2D and 3D digitized shapes and have demonstrated their multigrid convergence (for C-3-smooth surfaces). Since such approaches integrate local information within a ball around points of interest the radius is a crucial parameter. In this paper, we consider the radius as a scale-space parameter. By analyzing the behavior of such curvature estimators as the ball radius tends to zero, we propose a tool to efficiently characterize and extract several relevant features (edges, smooth and flat parts) on digital surfaces. (C) 2015 Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:177 / 189
页数:13
相关论文
共 50 条
  • [1] Morphological scale-space analysis and feature extraction
    Vachier, C
    2001 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL III, PROCEEDINGS, 2001, : 676 - 679
  • [2] Feature point extraction using scale-space representation
    Abdeljaoued, Y
    Ebrahimi, T
    ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 3053 - 3056
  • [3] A SCALE-SPACE FILTERING APPROACH FOR VISUAL FEATURE-EXTRACTION
    XIN, K
    LIM, KB
    HONG, GS
    PATTERN RECOGNITION, 1995, 28 (08) : 1145 - 1158
  • [4] A Scale-Space of Cortical Feature Maps
    Zosso, Dominique
    Thiran, Jean-Philippe
    IEEE SIGNAL PROCESSING LETTERS, 2009, 16 (10) : 873 - 876
  • [5] A new feature extraction for iris identification using scale-space filtering technique
    Hong, J
    Yang, WS
    Kim, D
    Kim, YJ
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2004, E87A (12): : 3404 - 3408
  • [6] Scale-space properties of quadratic feature detectors
    Kube, P
    Perona, P
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1996, 18 (10) : 987 - 999
  • [7] Scale-space vector fields for feature analysis
    Cross, ADJ
    Hancock, ER
    1997 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 1997, : 738 - 743
  • [8] Scale-space analysis and corner detection on digital curves using a discrete scale-space kernel
    Ray, BK
    Ray, KS
    PATTERN RECOGNITION, 1997, 30 (09) : 1463 - 1474
  • [9] Extraction of a structure feature from three-dimensional objects by scale-space analysis
    Imiya, A
    Katsuta, R
    SCALE-SPACE THEORY IN COMPUTER VISION, 1997, 1252 : 353 - 356
  • [10] Scale-space volume descriptors for automatic 3D facial feature extraction
    Chen, Daniel
    Mamic, George
    Fookes, Clinton
    Sridharan, Sridha
    World Academy of Science, Engineering and Technology, 2009, 35 : 861 - 866