Optimal Control in a Nonlinear Sequential Rendezvous Problem

被引:0
|
作者
Berdyshev, Yu. I. [1 ]
机构
[1] Russian Acad Sci, Ural Branch, Inst Math & Mech, Ekaterinburg 620990, Russia
关键词
D O I
10.1134/S1064230719010039
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An algorithm for constructing the time optimal control of a nonlinear fourth-order system that must visit two fixed points in the prescribed order is proposed. This system describes the motion of a car or an aircraft in the horizontal plane with a variable controllable speed and controllable steering angle.
引用
收藏
页码:95 / 104
页数:10
相关论文
共 50 条
  • [1] Optimal Control in a Nonlinear Sequential Rendezvous Problem
    Yu. I. Berdyshev
    [J]. Journal of Computer and Systems Sciences International, 2019, 58 : 95 - 104
  • [2] Singular optimal control for rendezvous problem for cooperative vehicle control
    Ekoru, John E. D.
    Ngwako, Mohlalakoma T.
    Madahana, Milka M. C. I.
    Nyandoro, Otis T. C.
    [J]. IFAC PAPERSONLINE, 2023, 56 (02): : 3320 - 3325
  • [3] Sequential Convex Programming for Nonlinear Optimal Control Problem in UAV Path Planning
    Zhang, Zhe
    Li, Jianxun
    Wang, Jun
    [J]. 2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 1966 - 1971
  • [4] On a nonlinear problem of a sequential control with a parameter
    Berdyshev, Yu. I.
    [J]. JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 2008, 47 (03) : 380 - 385
  • [5] On a nonlinear problem of a sequential control with a parameter
    Yu. I. Berdyshev
    [J]. Journal of Computer and Systems Sciences International, 2008, 47 : 380 - 385
  • [6] Nonlinear Optimal Control of Relative Rotational and Translational Motion of Spacecraft Rendezvous
    Navabi, M.
    Akhloumadi, Mahdi R.
    [J]. JOURNAL OF AEROSPACE ENGINEERING, 2017, 30 (05)
  • [7] On an optimal control problem for a nonlinear system
    Surkov, P. G.
    [J]. TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2013, 19 (04): : 241 - 249
  • [8] An optimal control approach to robust control of nonlinear spacecraft rendezvous system with θ-D technique
    School of Mathematical Science, Heilongjiang University, No. 74, Xuefu Road, Harbin 150080, China
    不详
    不详
    [J]. Int. J. Innov. Comput. Inf. Control, 5 (2099-2110):
  • [9] PROBLEM OF OPTIMAL RENDEZVOUS FOR A NONZERO DURATION
    BIEN, Z
    CHYUNG, DH
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1977, 23 (03) : 401 - 411
  • [10] Sequential Operator Splitting for Constrained Nonlinear Optimal Control
    Sindhwani, Vikas
    Roelofs, Rebecca
    Kalakrishnan, Mrinal
    [J]. 2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 4864 - 4871