Power-law exponent of the Bouchaud-Mezard model on regular random networks

被引:3
|
作者
Ichinomiya, Takashi [1 ]
机构
[1] Gifu Univ, Sch Med, Dept Biomed Informat, Gifu 5011194, Japan
来源
PHYSICAL REVIEW E | 2013年 / 88卷 / 01期
关键词
WEALTH;
D O I
10.1103/PhysRevE.88.012819
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the Bouchaud-Mezard model on a regular random network. By assuming adiabaticity and independency, and utilizing the generalized central limit theorem and the Tauberian theorem, we derive an equation that determines the exponent of the probability distribution function of the wealth as x -> infinity. The analysis shows that the exponent can be smaller than 2, while a mean-field analysis always gives the exponent as being larger than 2. The results of our analysis are shown to be in good agreement with those of the numerical simulations.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Random graph model with power-law distributed triangle subgraphs
    Sergi, D
    PHYSICAL REVIEW E, 2005, 72 (02):
  • [22] Regional variation of recession flow power-law exponent
    Patnaik, Swagat
    Biswal, Basudev
    Kumar, Dasika Nagesh
    Sivakumar, Bellie
    HYDROLOGICAL PROCESSES, 2018, 32 (07) : 866 - 872
  • [23] SPECIFICITY OF THE SPATIAL POWER-LAW EXPONENT IN ECOLOGY AND AGRICULTURE
    TAYLOR, LR
    PERRY, JN
    WOIWOD, IP
    TAYLOR, RAJ
    NATURE, 1988, 332 (6166) : 721 - 722
  • [24] Search in power-law networks
    Adamic, L.A.
    Lukose, R.M.
    Puniyani, A.R.
    Huberman, B.A.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 64 (4 II): : 461351 - 461358
  • [25] Synchronization in power-law networks
    Kocarev, L
    Amato, P
    CHAOS, 2005, 15 (02)
  • [26] Search in power-law networks
    Adamic, LA
    Lukose, RM
    Puniyani, AR
    Huberman, BA
    PHYSICAL REVIEW E, 2001, 64 (04)
  • [27] Remarks on power-law random graphs
    Yin, Mei
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2022, 153 : 183 - 197
  • [28] Estimators of tissue absorption parameters power-law prefactor and power-law exponent from medical ultrasonic images
    Brandner, Dinah Maria
    Zagar, Bernhard G. G.
    TM-TECHNISCHES MESSEN, 2023, 90 (10) : 672 - 682
  • [29] The bilateral power-law distribution model of supply chain networks
    Guo Jin-Li
    ACTA PHYSICA SINICA, 2006, 55 (08) : 3916 - 3921
  • [30] Scattering at the Anderson transition:: Power-law banded random matrix model
    Mendez-Bermudez, J. A.
    Varga, I.
    PHYSICAL REVIEW B, 2006, 74 (12)