Solution of electric-field-driven tight-binding lattice coupled to fermion reservoirs

被引:25
|
作者
Han, Jong E. [1 ]
机构
[1] SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA
来源
PHYSICAL REVIEW B | 2013年 / 87卷 / 08期
基金
美国国家科学基金会;
关键词
TRANSPORT;
D O I
10.1103/PhysRevB.87.085119
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study electrons in a tight-binding lattice driven by a dc electric field with their energy dissipated through on-site fermionic thermostats. Due to the translational invariance in the transport direction, the problem can be block diagonalized. We solve this time-dependent quadratic problem and demonstrate that the problem has a well-defined steady state. The steady-state occupation number shows that the Fermi surface shifts at small fields by the drift velocity, in agreement with the Boltzmann transport theory, but it then deviates significantly at high fields due to strong nonlinear effect. Despite the lack of momentum scattering, the conductivity takes the same form as the semiclassical Ohmic expression from the relaxation-time approximation. DOI: 10.1103/PhysRevB.87.085119
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Stationary scattering solution and logic operations in X-coupled tight-binding chains
    Nunes, Andressa
    Lyra, Marcelo L.
    PHYSICS LETTERS A, 2022, 446
  • [32] Landau levels in the case of two degenerate coupled bands: Kagome lattice tight-binding spectrum
    Xiao, Y
    Pelletier, V
    Chaikin, PM
    Huse, DA
    PHYSICAL REVIEW B, 2003, 67 (10)
  • [33] Electric-field-driven hole carriers and superconductivity in diamond
    Nakamura, K.
    Rhim, S. H.
    Sugiyama, A.
    Sano, K.
    Akiyama, T.
    Ito, T.
    Weinert, M.
    Freeman, A. J.
    PHYSICAL REVIEW B, 2013, 87 (21):
  • [34] Purely Electric-Field-Driven Perpendicular Magnetization Reversal
    Hu, Jia-Mian
    Yang, Tiannan
    Wang, Jianjun
    Huang, Houbing
    Zhang, Jinxing
    Chen, Long-Qing
    Nan, Ce-Wen
    NANO LETTERS, 2015, 15 (01) : 616 - 622
  • [35] Electric-field-driven switching of individual magnetic skyrmions
    Hsu P.-J.
    Kubetzka A.
    Finco A.
    Romming N.
    Von Bergmann K.
    Wiesendanger R.
    Nature Nanotechnology, 2017, 12 (2) : 123 - 126
  • [36] CRYSTAL FIELD EFFECTS IN TIGHT-BINDING APPROXIMATION
    MATTHEIS.LF
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1970, 15 (03): : 344 - &
  • [37] Effective Hamiltonians for fastly driven tight-binding chains
    Itin, A. P.
    Neishtadt, A. I.
    PHYSICS LETTERS A, 2014, 378 (10) : 822 - 825
  • [38] Tight-binding analysis of coupled dielectric waveguide structures
    Amiri, PK
    Ranjbaran, M
    Mehrany, K
    Rashidian, B
    Fathololoumi, S
    FIBER AND INTEGRATED OPTICS, 2006, 25 (01) : 11 - 27
  • [39] Electronic and optical properties of boron nitride nanoribbons in electric field by the tight-binding model
    Shyu, Feng-Lin
    PHYSICA B-CONDENSED MATTER, 2014, 452 : 7 - 12
  • [40] Tight-binding theory for coupled photonic crystal waveguides
    Chien, F. S. -S
    Tu, J. B.
    Hsieh, W. -F.
    Cheng, S. -C.
    PHYSICAL REVIEW B, 2007, 75 (12):