Novel converging diverging microchannel heat sink with porous fins for combined thermo-hydraulic performance

被引:10
|
作者
Bagherighajari, Fatemeh [1 ,2 ]
Abdollahzadehsangroudi, Mohammadmahdi [1 ,3 ]
Esmaeilpour, Mehdi [4 ]
Dolati, Farid [3 ]
Pascoa, Jose [1 ]
机构
[1] Univ Beira Interior, C MAST Ctr Mech & Aerosp Sci & Technol, Dept Engn Eletromecan, Covilha, Portugal
[2] Mazandaran Univ Sci & Technol, Dept Mech Engn, Babol, Iran
[3] Univ Guilan, Fac Mech Engn, Rasht, Iran
[4] Marshall Univ, Coll Engn & Comp Sci, Dept Mech & Ind Engn, Huntington, WV 25755 USA
关键词
THERMAL PERFORMANCE; PRESSURE-DROP; FLUID-FLOW; HYDRAULIC PERFORMANCE; TRANSFER ENHANCEMENT; OPTIMIZATION; CHANNEL; DESIGN; PARAMETERS;
D O I
10.1063/5.0118700
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The optimum design of the microchannel heat sinks needs to consider both the heat transfer and pressure drop limitations of the microchannel. In this paper, a novel configuration of the microchannel heat sink is proposed to obtain improved thermo-hydraulic performance. The proposed microchannel includes porous fins that form adjacent converging-diverging channels. Three-dimensional steady laminar simulations were conducted to access the performance of this novel microchannel and compare it with the conventional parallel ones with porous and solid fins. The results showed that by using this novel design, a 9.75% decrease in pressure drop is observed when compared to conventional solid fin parallel microchannel. Also, the mean Nusselt number of the microchannel heat sink with converging-diverging porous fins showed a maximum improvement of 16.5% compared to the parallel microchannel with solid fins. The overall thermo-hydraulic performance evaluation factor of the converging-diverging microchannel showed also a significant 20% improvement compared to conventional designs. The analysis of the flow fields showed that the converging diverging design with porous fins leads to a local pressure difference between two adjacent neighboring channels inducing a cross-wise velocity component within the porous fins leading to enhanced thermal performance. Moreover, it was shown that only for converging-diverging angles above 0.5 degrees, performance enhancement was observed compared with a microchannel with solid fins showing the existence of an optimum range for converging-diverging angles. The response surface method was used to find the optimum range of fin porosity and converging-diverging angle where the performance of the microchannel heat sink is maximum. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Thermo-hydraulic characteristics and structural optimization of supercritical CO2-cooled microchannel heat sink
    Huang, Hao
    Zhai, Yuling
    Li, Zhouhang
    Wang, Hua
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2024, 154
  • [32] Entropy generation analysis on thermo-hydraulic characteristics of microencapsulated phase change slurry in wavy microchannel with porous fins
    Dai, Hao
    Liu, Yingwen
    APPLIED THERMAL ENGINEERING, 2023, 219
  • [33] Thermo-Hydraulic Performance of Printed Circuit Heat Exchanger With Different Cambered Airfoil Fins
    Chu, Wen-Xiao
    Bennett, Katrine
    Cheng, Jie
    Chen, Yi-Tung
    Wang, Qiu-Wang
    HEAT TRANSFER ENGINEERING, 2020, 41 (08) : 708 - 722
  • [34] Thermo-hydraulic performance investigation of heat pipe used annular heat exchanger with densely longitudinal fins
    Bai, Wandong
    Chen, Wei
    Zeng, Chang
    Wu, Ge
    Chai, Xiaoming
    APPLIED THERMAL ENGINEERING, 2022, 211
  • [35] Numerical comparison for thermo-hydraulic performance of pin fin heat sink with micro channel pin fin heat sink
    V SARAVANAN
    C K UMESH
    Sādhanā, 2018, 43
  • [36] Numerical comparison for thermo-hydraulic performance of pin fin heat sink with micro channel pin fin heat sink
    Saravanan, V.
    Umesh, C. K.
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2018, 43 (07):
  • [37] Thermal and hydraulic performance investigation of microchannel heat sink with sidewall square pin-fins
    Alnaimat, Fadi
    Rahhal, Ahmad
    Mathew, Bobby
    RESULTS IN ENGINEERING, 2024, 21
  • [38] Thermo-hydraulic performance in ceramic-made microchannel heat sinks with an optimum fin geometry
    Cao, Yan
    Abbas, Mohamed
    El-Shorbagy, M. A.
    Gepreel, Khaled A.
    Dahari, M.
    Van Vang Le
    Badran, Mohamed Fathy
    Phat Huy Huynh
    Wae-hayee, Makatar
    CASE STUDIES IN THERMAL ENGINEERING, 2022, 36
  • [39] Thermo-hydraulic performance in ceramic-made microchannel heat sinks with an optimum fin geometry
    Cao, Yan
    Abbas, Mohamed
    El-Shorbagy, M.A.
    Gepreel, Khaled A.
    Dahari, M.
    Le, Van Vang
    Badran, Mohamed Fathy
    Huynh, Phat Huy
    Wae-Hayee, Makatar
    Case Studies in Thermal Engineering, 2022, 36
  • [40] Thermo-Hydraulic Performance of Pin-Fins in Wavy and Straight Configurations
    Saghir, Mohamad Ziad
    Rahman, Mohammad Mansur
    MICROMACHINES, 2022, 13 (06)