Novel converging diverging microchannel heat sink with porous fins for combined thermo-hydraulic performance

被引:10
|
作者
Bagherighajari, Fatemeh [1 ,2 ]
Abdollahzadehsangroudi, Mohammadmahdi [1 ,3 ]
Esmaeilpour, Mehdi [4 ]
Dolati, Farid [3 ]
Pascoa, Jose [1 ]
机构
[1] Univ Beira Interior, C MAST Ctr Mech & Aerosp Sci & Technol, Dept Engn Eletromecan, Covilha, Portugal
[2] Mazandaran Univ Sci & Technol, Dept Mech Engn, Babol, Iran
[3] Univ Guilan, Fac Mech Engn, Rasht, Iran
[4] Marshall Univ, Coll Engn & Comp Sci, Dept Mech & Ind Engn, Huntington, WV 25755 USA
关键词
THERMAL PERFORMANCE; PRESSURE-DROP; FLUID-FLOW; HYDRAULIC PERFORMANCE; TRANSFER ENHANCEMENT; OPTIMIZATION; CHANNEL; DESIGN; PARAMETERS;
D O I
10.1063/5.0118700
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The optimum design of the microchannel heat sinks needs to consider both the heat transfer and pressure drop limitations of the microchannel. In this paper, a novel configuration of the microchannel heat sink is proposed to obtain improved thermo-hydraulic performance. The proposed microchannel includes porous fins that form adjacent converging-diverging channels. Three-dimensional steady laminar simulations were conducted to access the performance of this novel microchannel and compare it with the conventional parallel ones with porous and solid fins. The results showed that by using this novel design, a 9.75% decrease in pressure drop is observed when compared to conventional solid fin parallel microchannel. Also, the mean Nusselt number of the microchannel heat sink with converging-diverging porous fins showed a maximum improvement of 16.5% compared to the parallel microchannel with solid fins. The overall thermo-hydraulic performance evaluation factor of the converging-diverging microchannel showed also a significant 20% improvement compared to conventional designs. The analysis of the flow fields showed that the converging diverging design with porous fins leads to a local pressure difference between two adjacent neighboring channels inducing a cross-wise velocity component within the porous fins leading to enhanced thermal performance. Moreover, it was shown that only for converging-diverging angles above 0.5 degrees, performance enhancement was observed compared with a microchannel with solid fins showing the existence of an optimum range for converging-diverging angles. The response surface method was used to find the optimum range of fin porosity and converging-diverging angle where the performance of the microchannel heat sink is maximum. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Thermo-hydraulic performance of nanofluids in a bionic fractal microchannel heat sink with traveling-wave fins
    Cong Qi
    Liang Sun
    Yuxing Wang
    Chengchao Wang
    Genglin Chen
    Korean Journal of Chemical Engineering, 2021, 38 : 1592 - 1607
  • [2] Thermo-hydraulic performance of nanofluids in a bionic fractal microchannel heat sink with traveling-wave fins
    Qi, Cong
    Sun, Liang
    Wang, Yuxing
    Wang, Chengchao
    Chen, Genglin
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2021, 38 (08) : 1592 - 1607
  • [3] Thermo-hydraulic performance analysis of converging-diverging heat exchanger with inclined fins using computational fluid dynamics
    Keramat, Fatemeh
    Izadpanah, Amir Abbas
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2022, 132
  • [4] THERMO-HYDRAULIC PERFORMANCE OF HEAT SINKS WITH MICROCHANNEL EMBEDDED WITH PIN-FINS
    Alkhazaleh, Anas
    Selim, Mohamed Younes El-Saghir
    Alnaimat, Fadi
    Mathew, Bobby
    PROCEEDINGS OF THE ASME 2021 HEAT TRANSFER SUMMER CONFERENCE (HT2021), 2021,
  • [5] Thermo-hydraulic performance of wavy microchannel heat sink with oblique grooved finned
    Alihosseini, Yousef
    Targhi, Mohammad Zabetian
    Heyhat, Mohammad Mahdi
    APPLIED THERMAL ENGINEERING, 2021, 189
  • [6] Thermo-hydraulic performance of solid/porous compound wavy microchannel heat sink with various angle of slanted passage
    Nandy, Ajoy Kumar
    Balasubramanian, Karthik
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART E-JOURNAL OF PROCESS MECHANICAL ENGINEERING, 2023,
  • [7] Effect of Porous Walls and Nanofluids on the Thermo-Hydraulic Performance of Tapered Double-Layered Microchannel Heat Sink
    Kumar, Avinash
    Bakli, Chirodeep
    PROCEEDINGS OF THE ASME 2022 POWER CONFERENCE, POWER2022, 2022,
  • [8] Thermo-hydraulic performance of a circular microchannel heat sink using swirl flow and nanofluid
    Ali, Abdullah Masoud
    Rona, Aldo
    Kadhim, Hakim T.
    Angelino, Matteo
    Gao, Shian
    APPLIED THERMAL ENGINEERING, 2021, 191
  • [9] Insight into porous fin microchannel heat sinks with improved thermo-hydraulic performance
    Abdollahzadehsangroudi, M.
    Francisco, M.
    Lopes, R.
    Dolati, F.
    Pascoa, J. C.
    Rodrigues, F.
    PHYSICS OF FLUIDS, 2024, 36 (04)
  • [10] A facile design of porous heat sink optimized thermodynamically for thermo-hydraulic performance
    Kumar, Avinash
    Debnath, Subradip
    Bakli, Chirodeep
    APPLIED THERMAL ENGINEERING, 2024, 250