Normalized Cut Group Clustering of Resting-State fMRI Data

被引:311
|
作者
van den Heuvel, Martijn [1 ]
Mandl, Rene [1 ]
Pol, Hilleke Hulshoff [1 ]
机构
[1] Univ Med Ctr Utrecht, Dept Psychiat, Rudolf Magnus Inst Neurosci, Utrecht, Netherlands
来源
PLOS ONE | 2008年 / 3卷 / 04期
关键词
D O I
10.1371/journal.pone.0002001
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Functional brain imaging studies have indicated that distinct anatomical brain regions can show coherent spontaneous neuronal activity during rest. Regions that show such correlated behavior are said to form resting-state networks (RSNs). RSNs have been investigated using seed-dependent functional connectivity maps and by using a number of model-free methods. However, examining RSNs across a group of subjects is still a complex task and often involves human input in selecting meaningful networks. Methodology/Principal Findings: We report on a voxel based model-free normalized cut graph clustering approach with whole brain coverage for group analysis of resting-state data, in which the number of RSNs is computed as an optimal clustering fit of the data. Inter-voxel correlations of time-series are grouped at the individual level and the consistency of the resulting networks across subjects is clustered at the group level, defining the group RSNs. We scanned a group of 26 subjects at rest with a fast BOLD sensitive fMRI scanning protocol on a 3 Tesla MR scanner. Conclusions/Significance: An optimal group clustering fit revealed 7 RSNs. The 7 RSNs included motor/visual, auditory and attention networks and the frequently reported default mode network. The found RSNs showed large overlap with recently reported resting-state results and support the idea of the formation of spatially distinct RSNs during rest in the human brain.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Resting-State fMRI and Developmental Systems Neuroscience
    Uddin, Lucina Q.
    BIOLOGICAL PSYCHIATRY, 2012, 71 (08) : 22S - 22S
  • [42] Resting-state fMRI in the Human Connectome Project
    Smith, Stephen M.
    Beckmann, Christian F.
    Andersson, Jesper
    Auerbach, Edward J.
    Bijsterbosch, Janine
    Douaud, Gwenaelle
    Duff, Eugene
    Feinberg, David A.
    Griffanti, Ludovica
    Harms, Michael P.
    Kelly, Michael
    Laumann, Timothy
    Miller, Karla L.
    Moeller, Steen
    Petersen, Steve
    Power, Jonathan
    Salimi-Khorshidi, Gholamreza
    Snyder, Abraham Z.
    Vu, An T.
    Woolrich, Mark W.
    Xu, Junqian
    Yacoub, Essa
    Ugurbil, Kamil
    Van Essen, David C.
    Glasser, Matthew F.
    NEUROIMAGE, 2013, 80 : 144 - 168
  • [43] Functional connectomics from resting-state fMRI
    Smith, Stephen M.
    Vidaurre, Diego
    Beckmann, Christian F.
    Glasser, Matthew F.
    Jenkinson, Mark
    Miller, Karla L.
    Nichols, Thomas E.
    Robinson, Emma C.
    Salimi-Khorshidi, Gholamreza
    Woolrich, Mark W.
    Barch, Deanna M.
    Ugurbil, Kamil
    Van Essen, David C.
    TRENDS IN COGNITIVE SCIENCES, 2013, 17 (12) : 666 - 682
  • [44] Resting-state fMRI in social phobia patients
    van der Wee, N.
    Pannekoek, N.
    Veer, I.
    van Tol, M. J.
    Demenescu, L.
    Aleman, A.
    Veltman, D.
    Zitman, F.
    Rombouts, S.
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2011, 21 : S536 - S536
  • [45] Resting-state fMRI and developmental systems neuroscience
    Uddin, Lucina Q.
    FRONTIERS IN NEUROSCIENCE, 2011, 5
  • [46] Changes in resting-state fMRI in vestibular neuritis
    Christoph Helmchen
    Zheng Ye
    Andreas Sprenger
    Thomas F. Münte
    Brain Structure and Function, 2014, 219 : 1889 - 1900
  • [47] Temporal dynamics in fMRI resting-state activity
    Yuste, Rafael
    Fairhall, Adrienne L.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (17) : 5263 - 5264
  • [48] Changes in resting-state fMRI in vestibular neuritis
    Helmchen, Christoph
    Ye, Zheng
    Sprenger, Andreas
    Munte, Thomas F.
    BRAIN STRUCTURE & FUNCTION, 2014, 219 (06): : 1889 - 1900
  • [49] Resting-state fMRI data of awake dogs (Canis familiaris) via group-level independent component analysis reveal multiple, spatially distributed resting-state networks
    Dóra Szabó
    Kálmán Czeibert
    Ádám Kettinger
    Márta Gácsi
    Attila Andics
    Ádám Miklósi
    Enikő Kubinyi
    Scientific Reports, 9
  • [50] Resting-state fMRI data of awake dogs (Canis familiaris) via group-level independent component analysis reveal multiple, spatially distributed resting-state networks
    Szabo, Dora
    Czeibert, Kalman
    Kettinger, Adam
    Gacsi, Marta
    Andics, Attila
    Miklosi, Adam
    Kubinyi, Eniko
    SCIENTIFIC REPORTS, 2019, 9 (1)