Normalized Cut Group Clustering of Resting-State fMRI Data
被引:311
|
作者:
van den Heuvel, Martijn
论文数: 0引用数: 0
h-index: 0
机构:
Univ Med Ctr Utrecht, Dept Psychiat, Rudolf Magnus Inst Neurosci, Utrecht, NetherlandsUniv Med Ctr Utrecht, Dept Psychiat, Rudolf Magnus Inst Neurosci, Utrecht, Netherlands
van den Heuvel, Martijn
[1
]
Mandl, Rene
论文数: 0引用数: 0
h-index: 0
机构:
Univ Med Ctr Utrecht, Dept Psychiat, Rudolf Magnus Inst Neurosci, Utrecht, NetherlandsUniv Med Ctr Utrecht, Dept Psychiat, Rudolf Magnus Inst Neurosci, Utrecht, Netherlands
Mandl, Rene
[1
]
Pol, Hilleke Hulshoff
论文数: 0引用数: 0
h-index: 0
机构:
Univ Med Ctr Utrecht, Dept Psychiat, Rudolf Magnus Inst Neurosci, Utrecht, NetherlandsUniv Med Ctr Utrecht, Dept Psychiat, Rudolf Magnus Inst Neurosci, Utrecht, Netherlands
Pol, Hilleke Hulshoff
[1
]
机构:
[1] Univ Med Ctr Utrecht, Dept Psychiat, Rudolf Magnus Inst Neurosci, Utrecht, Netherlands
Background: Functional brain imaging studies have indicated that distinct anatomical brain regions can show coherent spontaneous neuronal activity during rest. Regions that show such correlated behavior are said to form resting-state networks (RSNs). RSNs have been investigated using seed-dependent functional connectivity maps and by using a number of model-free methods. However, examining RSNs across a group of subjects is still a complex task and often involves human input in selecting meaningful networks. Methodology/Principal Findings: We report on a voxel based model-free normalized cut graph clustering approach with whole brain coverage for group analysis of resting-state data, in which the number of RSNs is computed as an optimal clustering fit of the data. Inter-voxel correlations of time-series are grouped at the individual level and the consistency of the resulting networks across subjects is clustered at the group level, defining the group RSNs. We scanned a group of 26 subjects at rest with a fast BOLD sensitive fMRI scanning protocol on a 3 Tesla MR scanner. Conclusions/Significance: An optimal group clustering fit revealed 7 RSNs. The 7 RSNs included motor/visual, auditory and attention networks and the frequently reported default mode network. The found RSNs showed large overlap with recently reported resting-state results and support the idea of the formation of spatially distinct RSNs during rest in the human brain.
机构:
Columbia Univ, Dept Biol Sci, New York, NY 10027 USA
Columbia Univ, Dept Neurosci, New York, NY 10027 USAColumbia Univ, Dept Biol Sci, New York, NY 10027 USA
Yuste, Rafael
Fairhall, Adrienne L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Washington, Dept Physiol & Biophys, Seattle, WA 98195 USA
Univ Washington, UW Inst Neuroengn, Seattle, WA 98195 USAColumbia Univ, Dept Biol Sci, New York, NY 10027 USA
机构:
Eotvos Lorand Univ, Dept Ethol, H-1117 Budapest, HungaryEotvos Lorand Univ, Dept Ethol, H-1117 Budapest, Hungary
Szabo, Dora
Czeibert, Kalman
论文数: 0引用数: 0
h-index: 0
机构:
Eotvos Lorand Univ, Dept Ethol, H-1117 Budapest, HungaryEotvos Lorand Univ, Dept Ethol, H-1117 Budapest, Hungary
Czeibert, Kalman
Kettinger, Adam
论文数: 0引用数: 0
h-index: 0
机构:
Hungarian Acad Sci, Res Ctr Nat Sci, H-1117 Budapest, Hungary
Budapest Univ Technol & Econ, Dept Nucl Tech, H-1111 Budapest, HungaryEotvos Lorand Univ, Dept Ethol, H-1117 Budapest, Hungary
Kettinger, Adam
Gacsi, Marta
论文数: 0引用数: 0
h-index: 0
机构:
Eotvos Lorand Univ, Dept Ethol, H-1117 Budapest, Hungary
MTA ELTE Comparat Ethol Res Grp, H-1117 Budapest, HungaryEotvos Lorand Univ, Dept Ethol, H-1117 Budapest, Hungary
Gacsi, Marta
Andics, Attila
论文数: 0引用数: 0
h-index: 0
机构:
Eotvos Lorand Univ, Dept Ethol, H-1117 Budapest, Hungary
MTA ELTE Lendulet Neuroethol Commun Res Grp, H-1117 Budapest, HungaryEotvos Lorand Univ, Dept Ethol, H-1117 Budapest, Hungary
Andics, Attila
Miklosi, Adam
论文数: 0引用数: 0
h-index: 0
机构:
Eotvos Lorand Univ, Dept Ethol, H-1117 Budapest, Hungary
MTA ELTE Comparat Ethol Res Grp, H-1117 Budapest, HungaryEotvos Lorand Univ, Dept Ethol, H-1117 Budapest, Hungary
Miklosi, Adam
Kubinyi, Eniko
论文数: 0引用数: 0
h-index: 0
机构:
Eotvos Lorand Univ, Dept Ethol, H-1117 Budapest, HungaryEotvos Lorand Univ, Dept Ethol, H-1117 Budapest, Hungary