On fundamental solutions for non-local parabolic equations with divergence free drift

被引:21
|
作者
Maekawa, Yasunori [1 ]
Miura, Hideyuki [2 ]
机构
[1] Tohoku Univ, Math Inst, Sendai, Miyagi 9808578, Japan
[2] Osaka Univ, Dept Math, Grad Sch Sci, Toyonaka, Osaka 5600043, Japan
关键词
Non-local parabolic equations; Divergence free drift; Fundamental solutions; Nash iteration; 2D dissipative quasi-geostrophic equations; QUASI-GEOSTROPHIC EQUATION; SYMMETRIC JUMP-PROCESSES; DIRICHLET FORMS; DIFFUSION-EQUATIONS; UPPER-BOUNDS; CONTINUITY; OPERATORS; KERNELS;
D O I
10.1016/j.aim.2013.07.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We are concerned with non-local parabolic equations in the presence of a divergence free drift term. By using the classical Nash approach, we show the existence of fundamental solutions together with continuity estimates, under weak regularity assumptions on the kernel of the non-local term and the velocity of the drift term. As an application, we give an alternative proof of global regularity for the two-dimensional dissipative quasi-geostrophic equations in the critical case. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:123 / 191
页数:69
相关论文
共 50 条
  • [31] Two approaches that prove divergence free nature of non-local gravity
    M. Hameeda
    B. Pourhassan
    M. C. Rocca
    Aram Bahroz Brzo
    The European Physical Journal C, 2021, 81
  • [32] Two approaches that prove divergence free nature of non-local gravity
    Hameeda, M.
    Pourhassan, B.
    Rocca, M. C.
    Brzo, Aram Bahroz
    EUROPEAN PHYSICAL JOURNAL C, 2021, 81 (02):
  • [33] General non-local electrodynamics: Equations and non-local effects
    Tarasov, Vasily E.
    ANNALS OF PHYSICS, 2022, 445
  • [34] LOCAL AND NON-LOCAL THEOREMS OF EXISTENCE FOR NON-LINEAR SECOND-ORDER PARABOLIC EQUATIONS
    SOBOLEVSKII, P
    DOKLADY AKADEMII NAUK SSSR, 1961, 136 (02): : 292 - +
  • [36] Solutions of kinetic equations related to non-local conservation laws
    Berthelin, Florent
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2023, 20 (01) : 119 - 154
  • [37] Two weak solutions for perturbed non-local fractional equations
    Zhang, Binlin
    Ferrara, Massimiliano
    APPLICABLE ANALYSIS, 2015, 94 (05) : 891 - 902
  • [38] Existence and prolongation of analytic solutions of non-local differential equations
    Ishimura, Ryuichi
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2012, 55 (02): : 179 - 197
  • [39] MULTIPLE SOLUTIONS FOR PERTURBED NON-LOCAL FRACTIONAL LAPLACIAN EQUATIONS
    Ferrara, Massimiliano
    Guerrini, Luca
    Zhang, Binlin
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [40] GLOBAL SOLUTIONS TO THE NON-LOCAL NAVIER-STOKES EQUATIONS
    Azevedo, Joelma
    Pozo, Juan Carlos
    Viana, Arlucio
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (05): : 2515 - 2535