The groups of points on abelian surfaces over finite fields

被引:6
|
作者
Rybakov, Sergey [1 ]
机构
[1] CNRS, UMI 2615, Poncelet Lab, F-75700 Paris, France
来源
ARITHMETIC, GEOMETRY, CRYPTOGRAPHY AND CODING THEORY | 2012年 / 574卷
关键词
Abelian variety; the group of rational points; finite field; Newton polygon; Hodge polygon; VARIETIES;
D O I
10.1090/conm/574/11424
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be an abelian surface over a finite field k. The k-isogeny class of A is uniquely determined by a Weil polynomial f(A) of degree 4. We give a classification of the groups of k-rational points on varieties from this class in terms of f(A).
引用
收藏
页码:151 / 158
页数:8
相关论文
共 50 条
  • [41] ORDINARY ABELIAN VARIETIES OVER FINITE FIELDS
    DELIGNE, P
    INVENTIONES MATHEMATICAE, 1969, 8 (03) : 238 - &
  • [42] Abelian varieties over fields of finite characteristic
    Zarhin, Yuri G.
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2014, 12 (05): : 659 - 674
  • [43] Isogenies of abelian varieties over finite fields
    Silverberg, Alice
    Zarhin, Yuri G.
    DESIGNS CODES AND CRYPTOGRAPHY, 2015, 77 (2-3) : 427 - 439
  • [44] RATIONAL POINTS OF ABELIAN VARIETIES OVER FUNCTION FIELDS
    LANG, S
    NERON, A
    AMERICAN JOURNAL OF MATHEMATICS, 1959, 81 (01) : 95 - 118
  • [45] Iterated monodromy groups of rational functions and periodic points over finite fields
    Bridy, Andrew
    Jones, Rafe
    Kelsey, Gregory
    Lodge, Russell
    MATHEMATISCHE ANNALEN, 2024, 390 (01) : 439 - 475
  • [46] Linear Systems Over Finite Abelian Groups
    Chattopadhyay, Arkadev
    Lovett, Shachar
    2011 IEEE 26TH ANNUAL CONFERENCE ON COMPUTATIONAL COMPLEXITY (CCC), 2011, : 300 - 309
  • [47] Normal sequences over finite abelian groups
    Guan, Huanhuan
    Yuan, Pingzhi
    Zeng, Xiangneng
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (04) : 1519 - 1524
  • [48] Gabor analysis over finite Abelian groups
    Feichtinger, Hans G.
    Kozek, Werner
    Luef, Franz
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2009, 26 (02) : 230 - 248
  • [49] DUALITIES FOR CODES OVER FINITE ABELIAN GROUPS
    Dougherty, Steven
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2024, 18 (06) : 1827 - 1841
  • [50] Counting compositions over finite abelian groups
    Gao, Zhicheng
    MacFie, Andrew
    Wang, Qiang
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (02):