Financial Fraud Detection Based on Machine Learning: A Systematic Literature Review

被引:27
|
作者
Ali, Abdulalem [1 ]
Abd Razak, Shukor [1 ,2 ]
Othman, Siti Hajar [1 ]
Eisa, Taiseer Abdalla Elfadil [3 ]
Al-Dhaqm, Arafat [1 ]
Nasser, Maged [4 ]
Elhassan, Tusneem [1 ]
Elshafie, Hashim [5 ]
Saif, Abdu [6 ]
机构
[1] Univ Teknol Malaysia, Fac Engn, Sch Comp, Skudai 81310, Malaysia
[2] Univ Sultan Zainal Abidin, Fac Informat & Comp, Kuala Terengganu 21300, Malaysia
[3] King Khalid Univ, Dept Informat Syst Girls Sect, Mahayil 62529, Saudi Arabia
[4] Univ Sains Malaysia, Sch Comp Sci, Gelugor 11800, Malaysia
[5] King Khalid Univ, Coll Comp Sci, Abha 61421, Saudi Arabia
[6] Univ Malaya, Fac Engn, Dept Elect Engn, Kuala Lumpur 50603, Malaysia
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 19期
关键词
financial fraud; fraud detection; machine learning; data mining; systematic literature review; Kitchenham approach; CREDIT CARD FRAUD; STATEMENT FRAUD; ALGORITHM; ACCOUNTS;
D O I
10.3390/app12199637
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Financial fraud, considered as deceptive tactics for gaining financial benefits, has recently become a widespread menace in companies and organizations. Conventional techniques such as manual verifications and inspections are imprecise, costly, and time consuming for identifying such fraudulent activities. With the advent of artificial intelligence, machine-learning-based approaches can be used intelligently to detect fraudulent transactions by analyzing a large number of financial data. Therefore, this paper attempts to present a systematic literature review (SLR) that systematically reviews and synthesizes the existing literature on machine learning (ML)-based fraud detection. Particularly, the review employed the Kitchenham approach, which uses well-defined protocols to extract and synthesize the relevant articles; it then report the obtained results. Based on the specified search strategies from popular electronic database libraries, several studies have been gathered. After inclusion/exclusion criteria, 93 articles were chosen, synthesized, and analyzed. The review summarizes popular ML techniques used for fraud detection, the most popular fraud type, and evaluation metrics. The reviewed articles showed that support vector machine (SVM) and artificial neural network (ANN) are popular ML algorithms used for fraud detection, and credit card fraud is the most popular fraud type addressed using ML techniques. The paper finally presents main issues, gaps, and limitations in financial fraud detection areas and suggests possible areas for future research.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Data Mining Approach In Financial Fraud Detection and a Literature Review
    Esen, M. Fevzi
    ESKISEHIR OSMANGAZI UNIVERSITESI IIBF DERGISI-ESKISEHIR OSMANGAZI UNIVERSITY JOURNAL OF ECONOMICS AND ADMINISTRATIVE SCIENCES, 2016, 11 (02): : 93 - 118
  • [22] Key Considerations to be Applied While Leveraging Machine Learning for Financial Statement Fraud Detection: A Review
    Lin, Dongjie
    IEEE Access, 2024, 12 : 168213 - 168228
  • [23] State of the art in financial statement fraud detection: A systematic review
    Shahana, T.
    Lavanya, Vilvanathan
    Bhat, Aamir Rashid
    TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE, 2023, 192
  • [24] Financial applications of machine learning: A literature review
    Nazareth, Noella
    Reddy, Yeruva Venkata Ramana
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 219
  • [25] Internet Financial Fraud Detection Based on Graph Learning
    Li, Ranran
    Liu, Zhaowei
    Ma, Yuanqing
    Yang, Dong
    Sun, Shuaijie
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2023, 10 (03) : 1394 - 1401
  • [26] Financial fraud detection: A comparative study of quantum machine learning models
    Innan, Nouhaila
    Khan, Muhammad Al-Zafar
    Bennai, Mohamed
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2024, 22 (02)
  • [27] Spotting Earnings Manipulation: Using Machine Learning for Financial Fraud Detection
    Rahul, Kumar
    Seth, Nandini
    Kumar, U. Dinesh
    ARTIFICIAL INTELLIGENCE XXXV (AI 2018), 2018, 11311 : 343 - 356
  • [28] Comparative Analysis of Machine Learning Methods Application for Financial Fraud Detection
    Menshchikov, Alexander
    Perfilev, Vladislav
    Roenko, Denis
    Zykin, Maksim
    Fedosenko, Maksim
    2022 32ND CONFERENCE OF OPEN INNOVATIONS ASSOCIATION (FRUCT), 2022, : 178 - 186
  • [29] Optimizing fraud detection in financial transactions with machine learning and imbalance mitigation
    Al-dahasi, Ezaz Mohammed
    Alsheikh, Rama Khaled
    Khan, Fakhri Alam
    Jeon, Gwanggil
    EXPERT SYSTEMS, 2024,
  • [30] Machine Learning Approaches for Code Smell Detection: A Systematic Literature Review
    Grujić, Katarina-Glorija
    Prokić, Simona
    Kovačević, Aleksandar
    Luburić, Nikola
    Vidaković, Dragan
    Slivka, Jelena
    SSRN, 2022,