Some optimizations of the Galerkin-Bubnov Integral Boundary Element Method

被引:0
|
作者
Antonijevic, Sinisa [1 ]
Poljak, Dragan [1 ]
机构
[1] PMF, Dept Polytech, Split, Croatia
关键词
GB-IBEM; integral equation methods; time domain analysis; optimization; computational efficiency; TIME MARCHING METHODS; HALF-SPACE; SCATTERING PROBLEMS; WIRE ANTENNAS; LOSSY;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Galerkin-Bubnov Integral Boundary Element Method (GB-lBEM) is used to model transient phenomena on thin wire structures directly in the time domain. One of the most prominent limitations of the method is the inability to deal with the structures above finally conducting half plane, due to the high computational inefficiency when ground losses are accounted for in the numerical model. In this paper, this problem is tackled via various modifications, in order to optimize GB-IBEM with respect to the computational speed. These optimizations of the original method result in several orders of magnitude improvement in the overall calculation time, allowing GB-IBEM to be used with geometries above lossy ground.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] A discrete Galerkin method for a hypersingular boundary integral equation
    Chien, DDK
    Atkinson, K
    IMA JOURNAL OF NUMERICAL ANALYSIS, 1997, 17 (03) : 463 - 478
  • [22] A fast and accurate algorithm for a Galerkin boundary integral method
    Wang, J
    Crouch, SL
    Mogilevskaya, SG
    COMPUTATIONAL MECHANICS, 2005, 37 (01) : 96 - 109
  • [23] Galerkin boundary integral method for evaluating surface derivatives
    L. J. Gray
    D. Maroudas
    M. N. Enmark
    Computational Mechanics, 1998, 22 : 187 - 193
  • [24] Galerkin boundary integral method for evaluating surface derivatives
    Gray, L.J.
    Maroudas, D.
    Enmark, M.N.
    1998, Springer-Verlag GmbH & Company KG, Berlin, Germany (22)
  • [25] Galerkin boundary integral method for evaluating surface derivatives
    Gray, LJ
    Maroudas, D
    Enmark, MN
    COMPUTATIONAL MECHANICS, 1998, 22 (02) : 187 - 193
  • [26] A SPECTRAL GALERKIN METHOD FOR A BOUNDARY INTEGRAL-EQUATION
    MCLEAN, W
    MATHEMATICS OF COMPUTATION, 1986, 47 (176) : 597 - 607
  • [27] A fast and accurate algorithm for a Galerkin boundary integral method
    J. Wang
    S. L. Crouch
    S. G. Mogilevskaya
    Computational Mechanics, 2005, 37 : 96 - 109
  • [28] Dynamic modelling and chaos control for a thin plate oscillator using Bubnov-Galerkin integral method
    Jiao, Xiaodong
    Wang, Xinyu
    Tao, Jin
    Sun, Hao
    Sun, Qinglin
    Chen, Zengqiang
    CHINESE PHYSICS B, 2023, 32 (11)
  • [29] Calculation of base station antenna radiation pattern using the weak Galerkin-Bubnov FEM formulation for integro-differential operators
    Vucicic, D
    Poljak, D
    Doric, V
    Boundary Elements XXVII: Incorporating Electrical Engineering and Electromagnetics, 2005, 39 : 575 - 585
  • [30] CHOICE OF COORDINATE FUNCTIONS IN BUBNOV-GALERKIN GENERALIZED METHOD
    MARCHUK, GI
    AGOSHKOV, VI
    DOKLADY AKADEMII NAUK SSSR, 1977, 232 (06): : 1253 - 1256